Jie Fan | Electroweak Physics | Best Researcher Award

Assoc. Prof. Dr. Jie Fan | Electroweak Physics | Best Researcher Award

Associate Researcher at Changchun University of Science and Technology  | China

Dr. Jie Fan is an Associate Researcher, Doctoral Supervisor, and Research Teacher at Changchun University of Science and Technology. Recognized as a High-Level D Talent in Jilin Province, Dr. Fan is a rising force in the field of semiconductor laser technology. With more than 30 academic publications and involvement in innovative laser device development, Dr. Fan is carving a significant niche in optoelectronic device research.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Dr. Fan pursued advanced studies in semiconductor optoelectronics, laying a robust academic foundation in laser device physics and engineering. The academic journey was defined by an early focus on semiconductor light sources and beam quality enhancement, which later evolved into targeted, high-impact research directions.

💼 Professional Endeavors

Currently serving at the Changchun University of Science and Technology, Dr. Fan has taken on multiple roles including research leader, doctoral mentor, and project investigator. Leading 9 scientific research projects showcases not only scientific depth but also the ability to manage complex, long-term research efforts effectively.

🔬 Contributions and Research Focus

Dr. Fan’s core research revolves around high-power and high beam quality semiconductor laser technology. A standout contribution is the monolithic integration of DBR master oscillator and tapered power amplifier (MOPA) structure, enabling lasers with enhanced beam quality and peak power. Another key innovation is the development of dual-wavelength semiconductor laser devices using double Bragg grating diffraction feedback, achieving stable dual-output modes. Furthermore, Dr. Fan has addressed the challenge of transverse multi-lobe output in high-power lasers, enhancing near-fundamental mode performance—a vital step for real-world applications.

🌐 Impact and Influence

Despite a currently low citation index (1), the originality and applied relevance of Dr. Fan’s work present strong potential for future academic and industrial impact. The submission of 8 additional patents underlines continuous innovation and the intention to bridge research with practical solutions in optoelectronics.

📚 Academic Citations

With 27 SCI/Scopus-indexed journal articles, including contributions to Optics Letters and Optics Communications, Dr. Fan has made substantial efforts in academic dissemination. While the current citation index reflects early-stage impact, the volume and quality of publications indicate strong groundwork for rising academic influence.

🧠 Research Skills

Dr. Fan brings expertise in semiconductor laser modeling, structural integration, diffraction feedback design, and device fabrication. The ability to move from conceptual design to physical realization of complex laser systems showcases a rare combination of theoretical insight and experimental skill.

👨‍🏫 Teaching Experience

As a doctoral supervisor, Dr. Fan is deeply involved in mentoring graduate students and guiding cutting-edge research topics. The integration of teaching and research helps foster a new generation of optoelectronics researchers equipped with both academic rigor and applied skills.

🏆 Awards and Honors

Dr. Fan is listed among the High-Level D Talents in Jilin Province, recognizing his scientific excellence and research leadership. This designation is a testament to his growing status as a key contributor in China’s advanced optoelectronics research landscape.

🧬 Legacy and Future Contributions

Looking ahead, Dr. Fan is poised to further influence the semiconductor laser industry through scalable device designs and collaborative innovation. While more visibility through citations, industry partnerships, and global collaboration will enhance his profile, the foundational research already promises a lasting legacy in high-performance laser device engineering.

Publications Top Notes

Research on the Asymmetric Phase-Shift Laterally-Coupled DFB Semiconductor Lasers with High Single Longitudinal Mode Yield

  • Authors: Zhang, Naiyu; Qiu, Bocang; Zou, Yonggang; Li, Qingmin; Ma, Xiaohui
    Journal: Optics Express
    Year: 2025

Study on Mode Characteristics of Supersymmetric Transversally Coupled Array Semiconductor Lasers

  • Authors: Wang, Zelong; Fan, Jie; Zou, Yonggang; Li, Yan; Ma, Xiaohui
    Journal: Optics Communications
    Year: 2025

Thermal Characteristics Analysis of Multi-Material Composite Heat Sink Structure Based on VCSEL Array

  • Authors: Wang, Chenxin; Zou, Yonggang; Fan, Jie; Song, Yingmin; Liang, Hongjin
    Journal: Laser and Optoelectronics Progress
    Year: 2025

Near 1050 nm Laterally Coupled DFB Laser with Tightened-Ridge-Waveguide for Improving Grating Coupling Capability and Controlling Lateral Modes

  • Authors: Hou, Huilong; Fan, Jie; Fu, Xiyao; Zou, Yonggang; Ma, Xiaohui
    Journal: Optics Letters
    Year: 2025

Dual-Wavelength Composite Grating Semiconductor Laser for Raman Detection

  • Authors: Huang, Zhuoer; Zou, Yonggang; Fu, Xiyao; Wang, Xiaozhuo; Cheng, Biyao
    Journal: Optics and Laser Technology
    Year: 2025

 

 

Jerzy Dryzek | The matter particles | Excellence in Research Award

Prof. Dr. Jerzy Dryzek | The matter particles | Excellence in Research Award

Professor at Institute of Nuclear Physics PAS | Poland

Prof. Jerzy Dryzek is a renowned physicist specializing in solid state physics and positron annihilation spectroscopy, with over four decades of academic and research experience. A pioneer in experimental physics in Poland, he has played a central role in developing advanced laboratory techniques in the field, particularly at the Institute of Nuclear Physics PAN in Kraków. His extensive international collaborations and leadership in scientific projects underscore his lasting influence in materials science and nuclear physics.

👨‍🎓Profile

Scopus

ORCID

📚 Early Academic Pursuits

Dr. Dryzek embarked on his academic journey with a Master’s degree from the Academy of Mining and Metallurgy in Kraków (1975–1980), where he focused on the “Technology of thin films.” He simultaneously pursued another Master’s in Nuclear Physics from the Jagiellonian University in Kraków (1977–1981), conducting a thesis on the “Measurement of the positron lifetime in silver films.” His deep interest in positron-related phenomena led to his Ph.D. (1981–1986) in Solid State Physics, with a dissertation titled “Electrical conductivity and electrical properties of thin metallic films (Au, Ag, Cu).”

🧪 Professional Endeavors

Since 1987, Dr. Dryzek has held a permanent position at the Institute of Nuclear Physics in Kraków, where he has been instrumental in establishing and expanding the positron annihilation laboratory. His international exposure includes scientific visits to Münster University, Germany, Helsinki University of Technology, Finland, Texas Christian University, USA, and collaborative research at Chalmers University of Technology, Sweden, and KEK in Tsukuba, Japan. He also served as Professor at the University of Zielona Góra (2005–2009) and Opole University (2009–2014).

🔬 Contributions and Research Focus

Dr. Dryzek’s research focus lies in positron annihilation spectroscopy, with special emphasis on pulsed positron beams, two-dimensional Doppler broadening, and positron annihilation in flight. He has led multiple national and international research projects, exploring grain boundaries, resonance trapping, and nonhomogeneous systems. His innovative work includes the construction of Doppler broadening spectrometers and advancing methods of studying subsurface zones in metallic alloys.

🌍 Impact and Influence

Dr. Dryzek’s impact extends beyond laboratory research. Through his leadership in the Centre of Excellence ADREM, he contributes to applying physics to human health and environmental safety. His collaborative initiatives have fostered German-Polish scientific cooperation, and his lectures and research work have enriched institutions in Europe, the USA, and Japan. His influence is particularly notable in shaping positron annihilation research infrastructure in Poland.

📖 Academic Cites

Dr. Dryzek’s work has been widely cited in peer-reviewed journals and international conferences, especially in the context of tribology, surface studies, and positron annihilation in condensed matter. His habilitation thesis in 2001, titled “Positron annihilation characteristics in condensed matter,” laid the foundation for his recognition as an Assistant Professor and later Full Professor in 2012.

🛠️ Research Skills

Dr. Dryzek demonstrates expertise in experimental physics, with deep proficiency in positron annihilation techniques, Doppler spectroscopy, and positron beam construction. He is also skilled in research project management, having led numerous scientific grants, coordinated interdisciplinary networks such as POSMAT, and conducted technology-based studies on materials like polymers, metals, and minerals.

👨‍🏫 Teaching Experience

Alongside research, Dr. Dryzek has actively contributed to academic teaching, notably as a lecturer in physics at the Pedagogical University in Kraków (1990–1992) and as a visiting professor at international institutions. He played a significant role in educating students from Münster University, fostering cross-border scientific knowledge exchange under the German-Polish Collaboration framework.

🏆 Awards and Honors

Among his recognitions are several competitive research grants awarded by the Committee of Scientific Research in Poland, European Commission (COST Programs), and German-Polish Foundations. His leadership in teaching grants, instrument development, and joint international projects reflects the high regard of his contributions to science and education.

🔮 Legacy and Future Contributions

With a legacy rooted in scientific innovation, academic mentorship, and international collaboration, Dr. Dryzek has established himself as a pioneer in positron physics. His work continues to inspire future generations, and his efforts in network coordination, grant acquisition, and technical development ensure ongoing contributions to the fields of solid-state physics and material science. His vision for advancing positron annihilation studies remains a guiding light for both theoretical and applied physics communities.

Publications Top Notes

Superior barrier performance, mechanical properties and compostability in relation to supramolecular structure of renewable based poly(trimethylene furanoate) modified with suberic acid

  • Authors: A. Zubkiewicz, A. Szymczyk, J. Dryzek, V.M. Siracusa, N. Lotti
    Journal: European Polymer Journal
    Year: 2025

Positronium Formation on the Rhenium Surface Studied by Slow Positron Measurements

  • Authors: J. Dryzek, M.O. Liedke, M. Butterling, E. Dryzek
    Journal: Physica Status Solidi (B) Basic Research
    Year: 2025

Influence of flexible segment length on the phase structure and properties of poly(hexamethylene 2,5-furandicarboxylate)-block-biopolytetrahydrofuran copolymers

  • Authors: S. Paszkiewicz, K. Walkowiak, I. Irska, Z.J. Rozwadowski, J. Dryzek
    Journal: Journal of Applied Polymer Science
    Year: 2024

Positron Annihilation and EBSD Studies of Subsurface Zone Created During Friction in Vanadium

  • Authors: J. Dryzek, M.X. Wróbel
    Journal: Journal of Tribology
    Year: 2023

Influence of the positron implantation profile on the study of the defect depth distribution by the positron annihilation technique

  • Authors: J. Dryzek
    Journal: Journal of Applied Physics
    Year: 2023