Ashraf M. Alattar | High energy physics | Editorial Board Member

Assist. Prof. Dr. Ashraf M. Alattar | High energy physics | Editorial Board Member

Teaching and head of lab, Al-Karkh University of Science, Iraq

👨‍🎓 Profile

🎓 Early Academic Pursuits

Dr. Ashraf Alattar’s academic journey began at the University of Technology, where he earned his B.Sc. in Applied Sciences in 2006. His pursuit of higher education continued at Pune University, India, where he received his M.Sc. in Physics from Fergusson College in 2011. The pinnacle of his academic career was achieved through a Ph.D. in Laser and Medical Physics, a joint program between the University of Baghdad and the Georgia Institute of Technology in 2017, which marked the beginning of his deep focus on medical applications of physics. 📚

💼 Professional Endeavors

Dr. Alattar has built a distinguished professional career, with a focus on Medical Physics and Laser & Molecular Physics. He currently serves as an Assistant Professor in the Department of Medical Physics at Al-Karkh University of Science, a position he has held since August 2021. His past roles include significant contributions to the University of Baghdad, where he worked on various administrative and academic tasks, and at Al-Hussain University College where he taught Medical Devices Techniques Engineering. His work has bridged the gap between academic research and practical healthcare solutions. 🏥

👨‍🏫 Teaching Experience

With over a decade of experience in teaching medical physics and engineering courses, Dr. Alattar has contributed extensively to academia. He has taught courses such as Medical Physics I & II, Physics of Medical Devices, Radiotherapy, Prosthetics Physics, and Biophysics at several institutions, including the University of Baghdad and Al-Karkh University of Science. His teaching approach focuses on bridging theory with practical application, preparing students to face challenges in the medical physics field. 🎓

🔬 Contributions and Research Focus

Dr. Alattar’s research lies at the intersection of laser technology and medical applications, particularly in the fields of medical devices and radiation therapy. His work explores innovative medical imaging, radiotherapy techniques, and the integration of biophysics with medical technologies. Through his contributions, he has aimed to improve diagnostic precision and treatment efficiency in healthcare. He continues to investigate the potential of molecular lasers for medical applications, focusing on the development of advanced techniques to optimize radiation doses and reduce patient risks. 🌱

📈 Impact and Influence

Dr. Alattar’s research has made a significant impact on the advancement of medical technologies, especially in Iraq. His dedication to improving healthcare systems through innovative research and technology has not only contributed to the academic community but also to practical healthcare solutions. His teaching has inspired future generations of medical physicists, making a lasting impact on students and professionals in the field of medical physics. 🌍

🧠 Academic Cites and Recognition

Dr. Alattar’s work has been widely recognized in the academic community. His research has been cited in numerous scientific journals, particularly in the fields of laser physics and medical applications. His Google Scholar and ORCID profiles demonstrate his ongoing contributions to the scientific literature, showcasing his impact on the global academic community. 📑

⚙️ Technical Skills

Dr. Alattar is highly skilled in various areas of Medical Physics, with expertise in:

  • Radiation Therapy 🌟
  • Medical Imaging 🖥️
  • Laser Physics 🔬
  • Biophysics & Molecular Physics 🧬
  • Medical Devices and Engineering Applications 🏥

His technical skills enable him to bridge the gap between theoretical research and real-world healthcare applications. 🚀

Top Noted Publications

The influence of pulsed laser on the structural and optical properties of green tea extract leaf produced with silver nanoparticles as antimicrobial
  • Authors: Alattar, A.M.
    Journal: Journal of Molecular Liquids
    Year: 2024
  • Title: Enhanced ultraviolet photodetector based on Al-doped ZnO thin films prepared by spray pyrolysis method
  • Authors: Abbas, S.I., Alattar, A.M., Al-Azawy, A.A.
    Journal: Journal of Optics (India)
    Year: 2024
Nanoparticles Prepared by Spray Pyrolysis Technology for UV Detector Improvement: Study Bacterial Activity with Medical Physics
  • Authors: Alattar, A.M., Abbas, S.I., Al‑Azawy, A.A.
    Journal: Plasmonics
    Year: 2024 (Article in Press)
Investigate optical and structural properties with molecular behavior of AgI and silver oxide nanoparticles prepared by green synthesis from the Acacia Senegal plant and achieving biocompatibility
  • Authors: Bahari, A., Esmail, S.I., Alattar, A.M.
    Journal: Journal of Optics (India)
    Year: 2024 (Open access)
Laser Fragmentation of Green Tea-synthesized Silver Nanoparticles and Their Blood Toxicity: Effect of Laser Wavelength on Particle Diameters
  • Authors: Alattar, A.M., Al-Sharuee, I.F., Odah, J.F.
    Journal: Journal of Medical Physics
    Year: 2024

 

 

Shri Krishna | High energy physics | Best Researcher Award

Dr. Shri Krishna | High energy physics | Best Researcher Award

Assistant Professor at Zakir Husain Delhi College, University of Delhi, India

Dr. Shri Krishna is a distinguished researcher and academic in theoretical high-energy physics, currently serving as an Assistant Professor at Zakir Husain Delhi College, University of Delhi. He earned his Ph.D. in Theoretical High Energy Physics from Banaras Hindu University (BHU) in 2015 under the supervision of Prof. R.P. Malik. His research centers on supersymmetric quantum mechanics and BRST symmetry within the framework of higher p-form gauge theories. Dr. Krishna’s academic journey also includes post-doctoral research at the Indian Institute of Science Education and Research (IISER) Mohali, where he worked with Prof. C.S. Aulakh. With numerous scientific publications in reputable journals, his work has significantly contributed to advancing the understanding of gauge theories and quantum mechanics. He has presented his research at national and international conferences, enhancing his recognition in the scientific community.

Profile:

Education:

Dr. Shri Krishna holds a Ph.D. in Theoretical High Energy Physics from Banaras Hindu University (BHU), Varanasi, completed in 2015. His doctoral research, supervised by Prof. R.P. Malik, focused on investigating (Non-)Abelian p-form gauge theories and supersymmetric quantum mechanics. Before his Ph.D., Dr. Krishna pursued an M.Phil. in Physics at Chhatrapati Shahu Ji Maharaj University (CSJMU), Kanpur, in 2009, where he gained a strong foundation in advanced physics concepts. He also earned his M.Sc. in Physics from CSJMU in 2006, further refining his understanding of theoretical and experimental physics. Dr. Krishna’s undergraduate studies, completed in 2002 at CSJMU, focused on Physics, Mathematics, and Chemistry. His robust educational background has equipped him with the knowledge and expertise to contribute meaningfully to the field of high-energy theoretical physics, especially in gauge theory and supersymmetry.

Professional experience:

Dr. Shri Krishna brings a wealth of experience from both research and teaching roles. After completing his Ph.D. in 2015, he undertook post-doctoral research at IISER Mohali, working with Prof. C.S. Aulakh from September 2015 to August 2018. His post-doctoral work focused on gauge theories and supersymmetry, contributing to the field with several impactful publications. Following this, Dr. Krishna transitioned into academia as an Assistant Professor (Ad-hoc) at Zakir Husain Delhi College and Miranda House, University of Delhi, where he has been teaching since August 2018. His teaching portfolio includes Quantum Mechanics, Electronics, Wave & Optics, and Elements of Modern Physics, among other subjects. His dual experience in advanced research and teaching has allowed him to bridge the gap between theoretical physics and pedagogical practice, offering students insights from cutting-edge research while guiding them through complex physics concepts.

Research focus:

Dr. Shri Krishna’s research focuses on higher p-form (p = 2, 3, 4) gauge theories within the framework of BRST and super field formulations. His work delves into the intricacies of supersymmetric quantum mechanics, particularly exploring N = 2, 4 systems and their novel symmetries. He has made significant contributions to understanding (non-)Abelian 2-form and 3-form gauge theories, which play a pivotal role in field theory and quantum mechanics. A key aspect of his research is developing theoretical models that unify aspects of gauge invariance, supersymmetry, and Hodge theory, aiming to offer deeper insights into the foundational principles of high-energy physics. Dr. Krishna continues to push the boundaries of these complex systems through his work on the BRST approach and super field methods, which hold promise for advancing theoretical models in high-energy particle physics.

Awards and Honors:

Dr. Shri Krishna has received several recognitions for his contributions to theoretical high-energy physics. During his academic career, he was awarded research fellowships at prestigious institutions, including his Ph.D. studies under the supervision of Prof. R.P. Malik at Banaras Hindu University (BHU). His research on BRST symmetry and gauge theories has been widely recognized, resulting in multiple publications in high-impact journals such as Annals of Physics and Eur. Phys. J. C. Additionally, Dr. Krishna has been invited to present his work at numerous national and international conferences, highlighting his research in areas like N = 2, 4 supersymmetric quantum mechanics and p-form gauge theories. These accolades reflect his dedication to advancing theoretical physics and his growing reputation within the academic and scientific communities.

Publication Top Notes:

  • A quantum mechanical example for Hodge theory
    S. Krishna, R. P. Malik
    Annals of Physics, 2024, 464, 169657.
    Citations: 1
  • A massive field-theoretic model for Hodge theory
    S. Krishna, R. Kumar, R. P. Malik
    Annals of Physics, 2020, 414, 168087.
    Citations: 12
  • Effective sextic superpotential and B – L violation in NMSGUT
    C. S. Aulakh, R. L. Awasthi, S. Krishna
    Pramana – Journal of Physics, 2017, 89(4), 51.
    Citations: 2
  • Augmented superfield approach to gauge-invariant massive 2-form theory
    R. Kumar, S. Krishna
    European Physical Journal C, 2017, 77(6), 387.
    Citations: 7
  • N = 4 supersymmetric quantum mechanical model: Novel symmetries
    S. Krishna
    International Journal of Modern Physics A, 2017, 32(11), 1750055.
    Citations: 1
  • Novel symmetries in an interacting N = 2 supersymmetric quantum mechanical model
    S. Krishna, D. Shukla, R. P. Malik
    International Journal of Modern Physics A, 2016, 31(19), 1650113.
    Citations: 8
  • N = 2 SUSY symmetries for a moving charged particle under influence of a magnetic field: Supervariable approach
    S. Krishna, R. P. Malik
    Annals of Physics, 2015, 355, pp. 204–216.
    Citations: 15
  • A free N = 2 supersymmetric system: Novel symmetries
    S. Krishna, R. P. Malik
    EPL, 2015, 109(3), 31001.
    Citations: 11
  • Augmented superfield approach to nilpotent symmetries of the modified version of 2D Proca theory
    A. Shukla, S. Krishna, R. P. Malik
    Advances in High Energy Physics, 2015, 2015, 258536.
    Citations: 9
  • Nilpotent and absolutely anticommuting symmetries in the Freedman-Townsend model: Augmented superfield formalism
    A. Shukla, S. Krishna, R. P. Malik
    International Journal of Modern Physics A, 2014, 29(31), 1450183.
    Citations: 5

Conclusion:

Dr. Shri Krishna is an accomplished researcher with a strong foundation in theoretical high-energy physics. His focus on supersymmetric quantum mechanics and gauge theories positions him as a strong candidate for the Best Researcher Award. With additional outreach and interdisciplinary collaborations, he could further elevate his already impressive academic standing.