Ahmed Abdelsalam | Theoretical Advances | Best Researcher Award

Mr. Ahmed Abdelsalam | Theoretical Advances | Best Researcher Award

Teaching assistant at Cairo University | Egypt

Ahmed Gamal Abdelsalam is a passionate theoretical physicist and teaching assistant at Cairo University, with deep involvement in quantum mechanics, plasma physics, and high-energy particle research. Originating from Giza, Egypt, Ahmed has consistently combined academic excellence with community service, showing both intellectual and social commitment. His journey from volunteer educator to published researcher reflects a blend of discipline, leadership, and scientific rigor. Known for his multi-disciplinary expertise, he contributes actively to Egypt’s academic and scientific development, with a strong potential to make lasting international contributions in physics and data modeling.

👨‍🎓Profile

Google scholar

🎓 Early Academic Pursuits

Ahmed began his academic career with a B.Sc. in Science from Cairo University in 2016. He enhanced his learning through prestigious summer schools at Zewail University and hands-on training at the National Research Center. His pursuit of knowledge led him to complete a Pre-Master’s program in 2019 and an M.Sc. in Science in 2021, specializing in theoretical physics. Through these experiences, Ahmed demonstrated early interest in particle interactions and quantum potentials, setting the foundation for future research. His commitment to academic excellence is supported by continuous training in plasma physics and modern physical theories.

💼 Professional Endeavors

Ahmed’s professional journey began with volunteer teaching in a literacy project (2011–2012), where he rose to team leader. From 2016 to 2018, he served as a military officer, leading operations with precision. Since 2018, he has worked as a teaching assistant at Cairo University, supporting courses in physics, research guidance, and laboratory instruction. These roles exhibit his leadership, discipline, and mentorship capabilities. His seamless transition between education, national service, and academia reflects strong adaptability, professional responsibility, and a dedication to societal development alongside academic growth.

🔬 Contributions & Research Focus

Ahmed’s research spans quarkonium spectroscopy, spin splitting, and magnetic interactions in particle systems. His most cited work “Bound state of heavy quarks using a general polynomial potential”—proposes novel models in quantum chromodynamics. He also co-authored a paper on space plasma phenomena in Scientific Reports (2025), marking his entry into applied space physics. His work explores complex mathematical approaches using Nikiforov-Uvarov methods, Schrödinger equations, and analytical modeling. Through this, Ahmed contributes significantly to modern theoretical physics, bridging foundational theory with computational applications in quantum systems and astrophysical plasmas.

🌍 Impact and Influence

Ahmed’s research impact is evident through citations, interdisciplinary topics, and recognition in global journals. His 2018 publication has 35 citations, reflecting its academic reach. By addressing subjects like quark-antiquark systems and Venusian magnetospheric behavior, his work influences both particle physics and space research domains. His research contributions provide analytical tools and spectral data for understanding subatomic forces and cosmic interactions, fostering cross-disciplinary innovation. Ahmed’s influence is not just in numbers but in the applicability of his findings to future space exploration and high-energy experiments, paving paths for emerging physicists in Egypt and beyond.

📊 Academic Citations

Ahmed has co-authored six notable publications. His standout paper on heavy quarks (2018) is cited 35 times, while other works such as the meson spectra (2022) and spin splitting (2020) have also drawn attention. His arXiv preprint and additional contributions collectively amount to over 50 citations, underscoring a growing academic presence. Published in respected journals like Advances in High Energy Physics, Results in Physics, and Scientific Reports, his works are referenced in research related to quantum theory, plasma physics, and nuclear interactions, affirming his role as a rising voice in theoretical and applied physics research.

🧠 Research Skills

Ahmed possesses advanced research skills in mathematical modeling, data fitting, and simulation of physical systems. He is proficient in programming languages like Python, Fortran, C, C++, and analytical tools such as IDL, Matlab, and Origin software. He applies numerical methods and theoretical frameworks to solve quantum field problems and interpret experimental data. His expertise in problem-solving, statistical analysis, and computational physics allows him to work across multiple physics disciplines. Ahmed also leverages Google Drive, Microsoft Office, and scientific visualization tools to organize, communicate, and present his findings clearly and professionally.

👨‍🏫 Teaching Experience

Ahmed has served as a teaching assistant at Cairo University since 2018, supporting undergraduate and postgraduate physics courses. His role includes lab instruction, tutorial sessions, and student mentoring, making complex theories accessible to learners. His earlier experience as a literacy teacher (2011–2012) equipped him with communication and leadership skills, further honed during his military officer training. Ahmed is known for fostering student engagement, using both traditional and digital platforms. His ability to blend academic rigor with student support makes him a well-rounded educator and a role model for aspiring Egyptian physicists.

🏅 Awards and Honors

While Ahmed has not listed formal awards, his academic journey reflects prestigious participation in elite programs like Zewail University’s Theoretical Physics School and BUE’s Plasma Physics Courses. His publications in indexed journals and the 2025 article in Scientific Reports signify a high level of peer recognition. His promotion within volunteer work and successful completion of military service also indicate commendable leadership and integrity. With growing citation counts and participation in national research programs, Ahmed has laid the groundwork for future awards in physics research, education, and innovation.

🚀 Legacy and Future Contributions

Ahmed is poised to become a leading researcher in theoretical and plasma physics. With experience in quantum mechanics, space physics, and analytical modeling, he is well-positioned to contribute to cutting-edge discoveries in astrophysics and particle interactions. He envisions deeper involvement in international collaborations, contributing to Egypt’s academic global presence. By mentoring future students and publishing impactful work, he aims to leave a lasting legacy of excellence, innovation, and service. His future may include Ph.D. studies, grant-winning research, and expanding his influence across global scientific communities.

Top Noted Publications

  • Bound state of heavy quarks using a general polynomial potential
    Authors: H. Mansour, A. Gamal
    Journal: Advances in High Energy Physics
    Year: 2018

  • Meson spectra using Nikiforov-Uvarov method
    Authors: H. Mansour, A. Gamal
    Journal: Results in Physics
    Year: 2022

  • Spin splitting spectroscopy of heavy Quark and Antiquarks systems
    Authors: H. Mansour, A. Gamal, M. Abolmahassen
    Journal: Advances in High Energy Physics
    Year: 2020

  • Two body problems with magnetic interactions
    Authors: H. Mansour, A. Gamal
    Year: 2019

  • Spectroscopy of the Quarkonium Systems for Heavy Quarks
    Authors: H. Mansour, A. Gamal
    Year: 2020

 

 

Hector Perez de-Tejada | Particle physics and cosmology | Best Faculty Award

Prof. Hector Perez de-Tejada | Particle physics and cosmology | Best Faculty Award

National University of Mexico | Mexico

Dr. Héctor Pérez-de-Tejada is an esteemed researcher and professor at the Institute of Geophysics, UNAM, Mexico. He holds a Doctorate in Space Sciences from the University of Colorado, Boulder and has been a faculty member at UNAM since 1970. As the first Ph.D. in Space Physics at UNAM, he has played a pioneering role in the development of space science research in Mexico.

👨‍🎓Profile

Scopus

Early Academic Pursuits 🎓

Dr. Pérez-de-Tejada’s academic journey began at the National University of Mexico (UNAM), where he completed his undergraduate studies at the School of Sciences. He furthered his education at the University of Colorado, where he obtained his Doctorate in Space Sciences. His early academic experiences set the foundation for his lifelong passion for planetary science and space physics, leading him to specialize in the interaction of the solar wind with planetary ionospheres.

Professional Endeavors 🌍

Since 1970, Dr. Pérez-de-Tejada has dedicated his career to research and education. He became a faculty member in Space Sciences at UNAM and also contributed to the University of Baja California in Ensenada. Throughout his career, he has been involved in cutting-edge space missions, including working as a guest investigator on NASA’s Pioneer Venus Orbiter and contributing to data analysis from the Venus Express spacecraft of the European Space Agency (ESA). His pioneering work in solar wind momentum transport and plasma dynamics has greatly advanced our understanding of planetary atmospheres.

Contributions and Research Focus 🔬

Dr. Pérez-de-Tejada has made over 100 significant publications, focusing on the interaction of solar wind with planetary ionospheres such as those of Venus, Mars, and comets. His work on the viscous transport of solar wind momentum in the Venus ionosheath and the discovery of plasma vortices in the Venus wake, over 40 years ago, have made a lasting impact in the field. He also proposed the theory of plasma channels over the magnetic poles of Venus, driven by the fluid dynamic Magnus force.

Impact and Influence 🌟

Dr. Pérez-de-Tejada’s work has had a transformative impact on the field of space science, particularly in the study of planetary ionospheres and solar wind interactions. His discoveries, such as the existence of plasma vortices and ionospheric holes on Venus, have influenced both contemporary studies and space mission design. His involvement in NASA and ESA missions reflects the international recognition of his work. He has also been a strong advocate for the development of space science infrastructure in Mexico, enhancing its visibility and global standing.

Academic Cites 📚

Dr. Pérez-de-Tejada’s publications have been widely cited in the field of space physics, with references in over 100 academic articles that build upon his theories of plasma dynamics and solar wind interaction. His work remains foundational for ongoing research on planetary atmospheres, especially with regard to Venus and Mars.

Research Skills 🧑‍🔬

Dr. Pérez-de-Tejada’s research is marked by advanced data analysis and theoretical modeling in space sciences. His extensive experience in using data from spacecraft missions such as the Pioneer Venus Orbiter and Venus Express has refined his ability to interpret complex plasma data. His research into the fluid dynamics and Magnus forces on planetary ionospheres demonstrates a deep understanding of both theoretical physics and practical spacecraft data collection.

Teaching Experience 🏫

A dedicated educator, Dr. Pérez-de-Tejada has mentored 15 students in undergraduate, Master’s, and PhD programs at UNAM and the University of Baja California. His students have gone on to make their own contributions in space science, a testament to his ability to inspire and guide the next generation of scientists and researchers. He has also taught and published two academic books, providing invaluable resources for those studying space sciences.

Awards and Honors 🏅

Dr. Pérez-de-Tejada has received numerous accolades in recognition of his work, including a celebration of his 50th anniversary of academic activities at UNAM and being distinguished at the National Workshop in Astrophysics in Mexico, which was named in his honor. His longstanding commitment to space science has been acknowledged both nationally and internationally, further solidifying his status as a leader in the field.

Legacy and Future Contributions 🌱

Dr. Pérez-de-Tejada’s legacy extends beyond his academic publications and mentorship. He was instrumental in the creation of the first ionospheric sounder in Mexico and the acquisition of a planetarium at UNAM. These contributions have helped raise the profile of space sciences in Mexico and contributed to public engagement with astronomy. His future work will likely continue to inspire young scientists while enhancing our understanding of planetary atmospheres and the broader universe.

Publications Top Notes

Wave-Particle Interactions in Astrophysical Plasmas

  • Authors: H. Pérez-De-Tejada, Héctor
    Journal: Galaxies
    Year: 2024

Measurement of plasma channels in the Venus wake

  • Authors: H. Pérez-De-Tejada, Héctor; R.N. Lundin, Rickard N.; Y. Futaana, Yoshifumi; T. Zhang, Tielong
    Journal: Icarus
    Year: 2019

Pluto’s plasma wake oriented away from the ecliptic plane

  • Authors: H. Pérez-De-Tejada, Héctor; H.J. Durand-Manterola, Héctor Javier; M. Reyes-Ruiz, Mauricio; R.N. Lundin, Rickard N.
    Journal: Icarus
    Year: 2015

A large-scale flow vortex in the Venus plasma tail and its fluid dynamic interpretation

  • Authors: R.N. Lundin, Rickard N.; S.V. Barabash, Stanislav V.; Y. Futaana, Yoshifumi; H. Pérez-De-Tejada, Héctor; J.A. Sauvaud, Jean André
    Journal: Geophysical Research Letters
    Year: 2013

Solar wind-driven plasma fluxes from the Venus ionosphere

  • Authors: H. Pérez-De-Tejada, Héctor; R.N. Lundin, Rickard N.; H.J. Durand-Manterola, Héctor Javier; J.A. Sauvaud, Jean André; M. Reyes-Ruiz, Mauricio
    Journal: Journal of Geophysical Research: Space Physics
    Year: 2013