Guangming Tao | Interactions and fields | Best Paper Award

Prof. Guangming Tao | Interactions and fields | Best Paper Award

Professor at Huazhong University of Science and Technology, China

Professor Guangming Tao is a distinguished academic at the Huazhong University of Science and Technology (HUST) in Wuhan, China. He serves as a Professor at both the Wuhan National Laboratory for Optoelectronics and the School of Materials Science and Engineering, and also leads as Director of the Sports and Health Initiative at the Optics Valley Laboratory. With a prolific academic journey rooted in optics and advanced materials, Prof. Tao has become an internationally recognized leader in wearable photonic technologies, metatextiles, and fiber-based smart systems, boasting over 120 research papers and ~6500 citations as of 2025.

šŸ‘Øā€šŸŽ“Profile

Google scholar

Scopus

ORCID

šŸŽ“ Early Academic Pursuits

Prof. Tao began his academic journey with a Bachelor’s degree in Optical Information Science and Technology from Shandong University (2006-2009). He then earned a Master’s in Optics from Fudan University, further deepening his expertise in light-based technologies. Driven by a strong research inclination, he pursued his Ph.D. in Optics at the University of Central Florida (CREOL), under the guidance of Prof. Ayman Abouraddy. His early academic focus laid a robust foundation in photonic materials, optical fiber design, and fabrication techniques, which later evolved into interdisciplinary applications in wearables, health monitoring, and energy-efficient devices.

šŸ§‘ā€šŸ’¼ Professional EndeavorsĀ 

Following his Ph.D., Prof. Tao continued at CREOL, University of Central Florida, serving as a Research Scientist (2014–2015) and later as a Senior Research Scientist (2015–2017). In 2017, he returned to China to join HUST as a full professor. At HUST, he leads multiple initiatives spanning materials science, optoelectronics, and smart textiles. As Director at Optics Valley Laboratory, he coordinates research that bridges fundamental science with real-world applications, notably in sports health, environmental sensing, and interactive display systems. His work emphasizes scalability, interactivity, and energy efficiency, making significant contributions to national and global research programs.

šŸ”¬ Contributions and Research Focus

Prof. Tao’s research is centered around wearable optoelectronics, fiber-based intelligent systems, and metamaterials for thermal regulation. He has pioneered innovations such as photochromic fiber displays, cooling metafabrics, and smart electronic cords. His published work includes breakthroughs in Science, Light: Science & Applications, Advanced Materials, and Nature Communications. His group focuses on designing materials that combine mechanical comfort, visual functionality, and energy autonomy, enabling advances in smart clothing, health monitoring, and adaptive camouflage. His innovations bridge the gap between lab-scale photonics and consumer-level smart textiles, defining new paradigms in functional wearables.

šŸŒ Impact and Influence

With over 6500 citations, Prof. Tao’s research has had a broad international impact across optics, materials science, wearable electronics, and environmental engineering. His innovations are shaping next-generation smart fabrics and redefining how textiles interact with light and temperature. His passive radiative cooling metafabrics, recognized by Science, are now a reference in sustainable energy management. His photochromic fiber displays are transforming interactive wearables, making them lighter, more responsive, and energy-efficient. Through international collaborations and open-access dissemination, he has become a thought leader, influencing both academic peers and industrial developers in smart material systems.

šŸ“š Academic Citations

Prof. Tao’s scholarly influence is marked by 120+ peer-reviewed publications and ~6500 citations (as of July 2025), with papers featured in top-tier journals such as Science, Nature Communications, Advanced Materials, and Light: Science & Applications. His most cited works include “Hierarchical-morphology metafabric” (Science 2021) and “Imperceptible braided electronic cord” (Nat. Commun. 2022). His research is consistently referenced in studies on thermal textiles, wearable sensors, and adaptive optics, underlining his central role in advancing interdisciplinary material technologies. His H-index and citation velocity reflect both the depth and growing relevance of his contributions to global innovation.

🧪 Research Skills

Prof. Tao possesses a unique combination of expertise in optics, nanofabrication, polymer processing, and textile integration. His core skills include fiber optics design, photochromic materials engineering, thermal management systems, and flexible electronics integration. He excels at converting advanced material science principles into functional, wearable prototypes. He leads multi-institutional projects, efficiently managing teams with diverse backgrounds. His capability to develop scalable fabrication processes makes his innovations ready for mass production and real-world adoption. With strong analytical and experimental skills, he bridges the gap between laboratory innovation and commercial application, often delivering solutions tailored to healthcare, environment, and defense sectors.

šŸ§‘ā€šŸ« Teaching ExperienceĀ 

At Huazhong University of Science and Technology, Prof. Tao teaches courses in Optoelectronics, Advanced Materials, and Smart Textiles to undergraduate and graduate students. He actively supervises Ph.D. and Master’s students, many of whom have received national scholarships and awards. His mentorship emphasizes interdisciplinary thinking, hands-on experimentation, and innovation-driven research. He integrates cutting-edge research topics into his teaching, fostering a research-intensive learning environment. Through seminars, workshops, and lab training, he cultivates the next generation of scientists in wearable technologies and functional materials. His teaching philosophy is centered on curiosity, creativity, and cross-border collaboration.

šŸ† Awards and Honors

Prof. Tao has earned multiple accolades recognizing his scientific innovation and leadership. These include Best Paper Awards, invitations to international keynote speeches, and governmental research grants supporting national-level projects. His paper on radiative cooling metafabric gained global attention and has been cited in climate and textile engineering domains. He has been nominated for awards in smart wearable innovation and advanced materials research, reflecting his broad influence. His leadership at the Optics Valley Laboratory and his role in large-scale interdisciplinary projects showcase his visionary direction in research. His consistent recognition affirms his place among leading figures in wearable photonics.

šŸ”® Legacy and Future Contributions

Prof. Guangming Tao is shaping the future of smart materials and functional fabrics. His legacy lies in merging fundamental optics with wearable systems, setting new benchmarks in interactive textiles and adaptive materials. Looking forward, he aims to expand into bio-integrated systems, AI-driven textile interfaces, and next-gen photonic skin for healthcare and defense. He envisions a world where textiles are not passive layers, but intelligent interfaces interacting seamlessly with users and the environment. Through global collaborations, mentorship, and technology transfer, Prof. Tao is committed to pushing scientific boundaries while ensuring that innovations reach and benefit society at large.

Publications Top Notes

Radiation-modulated thermoelectric fabrics for wearable energy harvesting

  • Authors: Y. Wang, H. Liu, S. Zhang, G. Tao, C. Liu, C. Shen

  • Journal: National Science Review

  • Year: 2025

Stretchable polymer optical fiber with an unusual relationship between optical loss and elongation

  • Authors: W. Wang, Z. Li, R. Zhao, Y. He, G. Tao, C. Hou

  • Journal: Journal of Lightwave Technology

  • Year: 2024

All-polymer aqueous fiber battery for sustainable electronics

  • Authors: M. Yang, G. Tao, M. Zhu, C. Hou

  • Journal: Advanced Fiber Materials

  • Year: 2025

Scalable hierarchical‐colored passive cooling Metapaint for outdoor facility

  • Authors: M. Yang, Z. Zhou, M. Liu, J. Wu, J. Li, J. Liang, S. Zhang, M. Chen, H. Zeng, X. Li, G. Tao, et al.

  • Journal: EcoMat

  • Year: 2024

Cooling textiles provide a new solution to urban heat islands

  • Authors: Z. Li, S. Zhang, Z. Yang, Z. Liang, N. Zhou, G. Tao, C. Hou

  • Journal: Advanced Fiber Materials

  • Year: 2024

 

 

Hosam M Gomaa | Material Science | Member

Dr. Hosam M Gomaa | Material Science | Member

PHD at Faculty of Science, Al-Azhar University, Cairo, Egypt

Dr. Hosam M. Gomaa, based in Giza, Egypt, is an accomplished physicist specializing in Solid State Physics. With a background from Al-Azhar University, Cairo, he has lectured extensively in Libya and Egypt, covering diverse topics from General Physics to Optics. Currently affiliated with the Pharaohs Higher Institute, his research spans Materials, Optics, and Physics, focusing on areas like Oxide Glasses and Nanomaterials. Dr. Gomaa is known for his expertise in Thermal Analysis and Spectral Techniques. He has been an integral part of prestigious scientific teams, contributing significantly to Mossbauer Effect and Nanoscience research labs.

Professional Profiles:

Educational Qualifications

B. Sc. of Physics, Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt, 1999/2000 M. Sc. of Solid State Physics, Department of Physics, Faculty of Science, Al-Azhar University, Cairo, Egypt, 2005 Ph. D. of Solid State Physics, Department of Physics, Faculty of Science, Al-Azhar University, Cairo, Egypt, 2008

Statement of Previous Experience:

Formal Lecturer (Assistant Professor) of Physics, Department of Physics, Faculty of Arts and Sciences, Sert University, Libya, 2009-2015 Lecturer (Assistant Professor) of Engineering Physics, Department of Physics, Faculty of Engineering Technology, Sert University, Libya, 2009-2015 Formal Tutor (Assistant Professor) of Basic Sciences (Physics, Electrical Engineering, Fundamentals of Electronics, Optics), Optical Branch, High Institute of Optical Technology, Cairo, Egypt, 2016-2020

Research Focus:

Dr. Hosam M. Gomaa’s research primarily focuses on the optical and structural properties of various glass systems, with a particular emphasis on bismuth borate glasses. His work encompasses the investigation of dopants like zinc, calcium, and niobium, and their effects on linear and nonlinear optical parameters. Additionally, he explores the structural modifications induced by the inclusion of different metal oxides, such as vanadium, copper, and titanium. Dr. Gomaa’s research contributes significantly to the understanding of glass materials for optoelectronic applications and radiation shielding. His studies offer valuable insights into the development of novel glass compositions with tailored optical and functional properties.

Publications

  1. Non-zero Īø13 and Ī“CP phase with A4 flavor symmetry and deviations to tri-bi-maximal mixing via Z2 × Z2 invariant perturbations in the neutrino sector, Publication: 2024.
  2. Effect of replacing B2O3 with Dy2O3 on the structural, physical, and radiation shielding properties of sodium boroaluminate glass, Publication: 2024.
  3. Investigating La2O3-enriched glass compositions: thermal, optical, structural properties and Gamma-Ray shielding efficiency, Publication: 2024.
  4. Photoimpedance spectroscopy of ZnTe/ZnMnTe heterojunction for photodetector devices using Cole–Cole diagrams and relaxation time process,Ā Publication: 2023.
  5. Effect of BaO doping on the structural and optical properties of some cerium-copper sodium borate glasses, Publication: 2023.
  6. Estimate of the effect of adding CoCl 2 in different amounts on the structural, optical properties, and the radiation shielding ability of arsenic borate glasses containing Na+, Ca++, and Pb++ cations, Publication: 2023.
  7. New mathematical formulas for more accurate physical descriptions of the optical and optoelectric conductivities of an optical medium, Publication: 2023.
  8. Effect of Graphene Nanopowder on the Structural and Optical Characteristics of Lead Borovanadate Glass Containing Ca2+ and Na+ Cations, Publication: 2023.
  9. Structural properties, linear, and non-linear optical parameters of ternary Se80Te(20āˆ’x)Inx chalcogenide glass systemsAnĆ”lisis estructural y parĆ”metros ópticos lineales y no lineales de sistemas ternarios de vidrio de calcogenuro de composición Se80Te(20-x)Inx, Publication: 2023.
  10. Toward a novel and accurate relationship between electrical and optical conductivity in opto-material sciences: New strategy,Ā Publication: 2022.

 

.

Houda Jebari | Materials Science | Member

Mrs. Houda Jebari | Materials Science | Member

PHD at Mohammed V University of Rabat, Morocco

Houda Jebari is a Ph.D. student in Physics specializing in Condensed Matter and Modeling of Systems at the Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMCSci) at Mohammed V University of Rabat, Morocco. Her research focuses on experimental studies and theoretical calculations using Density Functional Theory (DFT) and Monte Carlo simulation. She investigates the structural, electronic, transport, mechanical, optical, and magnetic properties of various materials and 2D-materials for applications in spintronics, photovoltaics, optoelectronics, batteries, magnetic fields, photocatalysis, and magnetocalorics, with a long-term interest in environmental applications of multiferroic materials and 2D-materials.

Professional Profiles:

Education and Diploma:

Ph.D. in Physics (Condensed Matter and Modeling of Systems) Master’s degree in Computational Physics Bachelor’s degree in Physics General University Study’s degree in Physics (DEUG) High school degree in Mathematical Sciences A option

Professional Experiences:

Research internship at the LPCMIO Laboratory, Ecole Normal SupƩrieure Rabat Substitute professor of practical works at the Faculty of Sciences Rabat, Morocco

Scientific Communications:

Presented at various conferences including the LaMCScI Meeting and EURO-MEDITERRANEAN CONFERENCE ON MATERIALS AND RENEWABLE ENERGIES Oral and poster communications at international conferences Multiple articles submitted for publication in scientific journals

Skills

Computer Skills: Proficient in programming languages (C/C++/C#/FORTRAN), DFT codes (Akai-KKR, WIEN2K, QUANTUM ESPRESSO, CASTEP), operating systems (Windows, Linux), and other software such as 3DS Max and Unity. Soft Skills: Strong teamwork, motivation, flexibility, and time management. Experimental Skills: Experience in synthesis methods and characterization techniques including FT-IR spectroscopy, DSC, and dielectric measurement.

Research Focus:

Houda Jebari’s research focuses on theoretical investigations of various materials, particularly exploring their electronic, optical, and thermoelectric properties. She has contributed significantly to the study of halide perovskite compounds, such as AGeI2Br, for photovoltaic applications. Additionally, her work extends to the exploration of magnetocaloric properties in compounds like Bi25FeO40 and EuCrO3. Jebari’s research also encompasses the analysis of novel materials like MoS2 for hydrogen production and CsGeI2Br for optoelectronic applications. Through her studies, she aims to advance understanding and facilitate the practical applications of these materials in renewable energy and environmental technologies.

PublicationsĀ 

  1. The investigation of the electronic, optical, and thermoelectric properties of the Ge‐based halide perovskite AGeI2Br (aĀ =Ā K, Rb, Cs) compound for a photovoltaic …, cited by: 26, Publication date: 2022.
  2. Theoretical investigation of electronic, magnetic and magnetocaloric properties of Bi25FeO40Ā compound,Ā cited by: 12, Publication date: 2021.
  3. Structural, optical, dielectric, and magnetic properties of iron-sillenite Bi25FeO, cited by: 8, Publication date: 2022.
  4. First-principles calculations to investigate structural, electronic, optical, thermoelectric, magnetic, and magnetocaloric properties of the orthochromite EuCrO3, cited by: 4, Publication date: 2023.
  5. Tensile effect on photocatalytic and optoelectronic properties of MoS2 for hydrogen production: DFT study, cited by: 1, Publication date: 2024.
  6. Structural, Infrared and Raman Spectroscopy Reinvestigation, and Theoretical Optoelectronic Properties of Hydrazinium (1+) Hexafluorosilicate (N2H5) 2SiF6, Publication date: 2023.
  7. Insights into optoelectronic behaviors of novel double halide perovskites Cs2KInX6 (X= Br, Cl, I) for energy harvesting: First principal calculation, Publication date: 2024.
  8. First principal calculation of the physical proprieties of the ternary intermetallic compound Gd2Cu2Cd for magnetic refrigeration applications, Publication date: 2024.
  9. Analysis of the structural, electronic, optical and mechanical properties of CsGeI2Br under tensile and compressive strain for optoelectronic applications: A DFT computational …, Publication date: 2024.
  10. Photovoltaic and thermoelectric properties of Ag2MnGeS4_Kesterite: First-principal investigations, Publication date: 2023.

 

.

Issam Derkaoui | Materials Science | Member

Dr. Issam Derkaoui | Materials Science | Member

PHD at FSDM, Fez, Morocco

Issam Derkaoui, a PhD holder in Materials Science and Industrial Processes, specializes in the experimental development of nanocomposites with graphene derivatives and metal oxides. His research, spanning from synthesis to characterization, aims to advance nanotechnologies. Additionally, he employs first-principles calculations like DFT to model metal oxides and perovskites. With extensive post-doctoral and teaching experience, Issam has honed skills in materials characterization and synthesis methods. He has contributed to numerous publications and presented at international conferences. As a reviewer and organizer, Issam actively engages in the academic community, fostering advancements in materials science and computational physics.

Professional Profiles:

EDUCATION

Temporary Post-Doctoral Researcher Solid State Physics Laboratory, FSDM, Fez, Morocco July 2018 – 2022 Experimental: Synthesis and characterization of nanomaterials and nanocomposites. Theoretical: Validation of experimental results using DFT calculations. Permanent Teacher of Physics Preparatory classes for engineering schools, Ibn Ghazi, Meknes, Morocco 2015 – 2019 Training in Materials Characterization Techniques National Institute of Materials Physics (NIMP), Bucharest, Romania X-ray diffractometer, Raman Spectroscopy, Spectroscopic Ellipsometry Training in Material Synthesis Methods National Institute of Materials Physics (NIMP), Bucharest, Romania Magnetron Sputtering Method, Hydrothermal Method, Pyrolysis Spray Technique Vacancy for the Training: Methodology of Writing a Final Project Laboratory of Theoretical and Applied Physics, FSDM, Fez, Morocco

RESEARCH INTERNSHIPS

Associate Professor: University of Dschang, Cameroon (2019 – Present) Lecturer and Visiting Lecturer: Various institutions in Cameroon (2012 – 2019) Visiting Lecturer: National Polytechnic Bambui, Cameroon (2008 – 2009) Visiting Lecturer: Intitut PrivĆ© Polyvalent la Reforme, Cameroon (2007 – 2008)

SOFTWARE SKILLS

CASTEP Materials Studio Movavi OriginLab PVSyst PVGIS PowerPoint Quantum Espresso Python

RESEARCH AREA EXPERIENCE

Issam Derkaoui’s research interests lie in both experimental and theoretical aspects of materials science, with a focus on: Hydrothermal Synthesis Chemical synthesis methods Metal oxides (VxOy, WOx, ZnO, etc.) Graphene (GO, rGO) Nanostructures Nanocomposites Structural properties Optoelectronic properties

Research Focus:

Based on the provided publications, Issam Derkaoui’s research primarily focuses on the structural, electronic, and optical properties of various materials, including ZnO nanowires, graphene nanohybrids, and metal oxides. His investigations span experimental and theoretical approaches, employing techniques such as first-principles calculations and experimental characterization methods. Derkaoui’s work contributes to advancing our understanding of nanocomposites, thin films, and semiconductor materials, with applications ranging from optoelectronic devices to photodetectors. Overall, his research interests lie at the intersection of materials science, nanotechnology, and computational physics, aiming to drive innovations in diverse technological domains.

PublicationsĀ 

  1. Optimization of the luminescence and structural properties of Er-doped ZnO nanostructures: effect of dopant concentration and excitation wavelength, cited by: 21, Publication date: 2022.
  2. Improved first-principles electronic band structure for cubic (Pm3m) and tetragonal (P4mm, P4/mmm) phases of BaTiO3 using the Hubbard U correction, Publication date: 2023.
  3. Overview of the Structural, Electronic and Optical Properties of the Cubic and Tetragonal Phases of PbTiO3 by Applying Hubbard Potential Correction, Publication date: 2023.
  4. Thermionic Emission of Atomic Layer Deposited MoO3/Si UV Photodetectors, Publication date: 2023.
  5. Effect of strontium (Sr) doping on the structural, electronic and optical properties of ZnO, by first-principles calculations, Publication date: 2023.
  6. Reduced graphene oxide-functionalized zinc oxide nanorods as promising nanocomposites for white light emitting diodes and reliable UV photodetection devices, Publication date: 2023.
  7. Impact of thickness on optoelectronic properties of α-MoO3 film photodetectors: Integrating first-principles calculations with experimental analysis, Publication date: 2023.
  8. Self-Powered UV Photodetector Utilizing Plasmonic Hot Carriers in 2D α-MoO3/Ir/Si Schottky Heterojunction Devices, Publication date: 2023.
  9. Investigation of structural and optical properties of Mg doped ZnS thin films prepared by Mist-CVD technique: Experimental and theoretical aspects,Ā Publication date: 2024.
  10. The interface structural, electronic and optical properties of ZnO nanowires/Graphene nanohybrid (ZnO NWs/G): Experimental and theoretical DFT investigations, Publication date: 2024.

 

.