Zhaocang Meng | Computational Methods | Best Researcher Award

Assist. Prof. Dr. Zhaocang Meng | Computational Methods | Best Researcher Award

Institute of Modern Physics, Chinese Academy of Sciences | China

Dr. Zhaocang Meng is a materials physicist specializing in first-principles simulations, irradiation damage modeling, and additive manufacturing of advanced materials. He earned his Ph.D. in Science through a joint program between the Institute of Modern Physics, Chinese Academy of Sciences (CAS) and Lanzhou University. His research spans the atomic-scale behavior of defects, mechanical property evaluation, and high-throughput screening for material optimization. Currently based at the Institute of Modern Physics, CAS, he is an integral contributor to strategic projects funded by both national and provincial Chinese foundations.

šŸ‘Øā€šŸŽ“Profile

Scopus

šŸŽ“ Early Academic Pursuits

Dr. Meng began his academic journey at Northwest Normal University, majoring in Physics and Electronic Engineering, where he laid the groundwork in material science and theoretical physics. He continued his master’s studies at the Institute of Modern Physics, CAS, focusing on radiation effects and material behavior. His intellectual curiosity and growing expertise led to a Ph.D. (2018–2021) in a joint doctoral program between CAS and Lanzhou University, where he honed his skills in density functional theory (DFT) and multi-scale simulations, preparing him for a robust career in theoretical and computational materials science.

šŸ’¼ Professional Endeavors

Since July 2021, Dr. Meng has served as a researcher at the Institute of Modern Physics, Chinese Academy of Sciences, contributing to major national research initiatives, including the CAS Strategic Priority Program. His role encompasses both theoretical modeling and applied computation for nuclear-grade materials, ceramics, and metallic systems. He is actively involved in Grain Boundary Segregation Engineering for SiC and BeO, and supports the development of neural network potentials. His practical contributions extend to thermophotovoltaic energy systems and irradiation-resilient structural materials, demonstrating a bridge between computational insight and real-world application.

šŸ”¬ Contributions and Research FocusĀ 

Dr. Meng’s primary contributions lie in the atomistic modeling of radiation-induced defects, grain boundary behavior, and mechanical performance of ceramics and metals. His first-principles investigations in materials like Tiā‚ƒAlCā‚‚, BeO, SiC, and Be₁₂Ti have revealed novel insights into defect–impurity interactions, hydrogen/helium diffusion, and segregation phenomena under extreme environments. He has also made impactful strides in the development of neural network potentials for materials like SiC, allowing large-scale simulations with quantum-level accuracy. His work directly supports the advancement of materials for nuclear reactors, space missions, and extreme-condition engineering.

šŸŒ Impact and Influence

Dr. Meng’s work has influenced fields such as nuclear materials, condensed matter theory, and computational materials science. His articles in high-impact journals like Physical Chemistry Chemical Physics, Journal of Nuclear Materials, and RSC Advances have become key references in radiation material modeling. His collaborations across diverse domains, from hydrogen embrittlement to deep potential learning for FCC copper, highlight his versatility. The adoption of his findings in defect prediction and grain boundary design has practical implications for materials used in reactors and space technology, positioning him as a rising figure in next-generation material research.

šŸ“š Academic CitesĀ 

With a growing body of 14+ peer-reviewed publications, Dr. Meng’s research outputs have earned significant citations in domains like irradiation defect dynamics, machine-learned interatomic potentials, and grain boundary engineering. His work on Tiā‚ƒAlCā‚‚ and Be₁₂Ti systems has been cited for its pioneering insights into defect clusters and transmutation effects, while his 2023 papers on SiC doping and neural network-based modeling have gained traction among materials engineers and computational physicists. His interdisciplinary footprint, combining physics, chemistry, and mechanical engineering, enhances his recognition across both academic and applied research networks.

šŸ› ļø Research SkillsĀ 

Dr. Meng demonstrates mastery in first-principles methods (DFT), molecular dynamics, machine learning potentials, and multi-scale simulation frameworks. His computational toolkit includes VASP, Quantum ESPRESSO, LAMMPS, and deep learning platforms like DeePMD-kit. He excels in automated high-throughput screening, grain boundary structure prediction, and radiation damage modeling. His ability to link atomic-level processes to macroscopic properties allows him to tackle engineering problems with atomic precision. He is adept at designing simulation protocols that align with experimental validations, ensuring a feedback loop between theory and practice a critical skill in today’s data-driven research environment.

šŸ‘Øā€šŸ« Teaching ExperienceĀ 

While primarily a researcher, Dr. Meng has informally mentored junior scientists and graduate students during his tenure at the Institute of Modern Physics. He has contributed to internal training modules and simulation workshops focusing on first-principles methods and materials modeling software. As his academic journey matures, he is well-positioned to engage in formal teaching or curriculum development, especially in computational material science, AI-driven simulations, and solid-state physics. His clarity in technical writing and collaborative style suggest strong potential as a future university lecturer or postgraduate supervisor.

šŸ… Awards and HonorsĀ 

Although specific awards are not mentioned, Dr. Meng’s selection for national strategic research programs (e.g., CAS Grant No. XDA0410000) and provincial funding initiatives like Guangdong Basic Research Foundation reflect institutional recognition of his capabilities. His consistent publication record in top-tier international journals underscores his scientific credibility. Being chosen to lead studies involving Grain Boundary Engineering and deep learning potentials in cutting-edge materials confirms his reputation among peers and senior collaborators. With this trajectory, formal honors such as Young Scientist Awards or Outstanding Researcher Fellowships are highly likely in the near future.

šŸ”® Legacy and Future ContributionsĀ 

Dr. Zhaocang Meng is poised to leave a lasting legacy in predictive materials design. His work in irradiation resistance, grain boundary tailoring, and AI-driven material exploration sets a solid foundation for next-gen energy systems, including fusion reactors, radioisotope thermoelectric generators, and space propulsion materials. Future contributions may include cross-disciplinary collaboration with AI scientists, sustainable materials discovery, and experimental validation partnerships. His potential to transition from a leading researcher to a thought leader and educator is evident. Dr. Meng represents a new era of materials scientists who bridge theory, computation, and practical innovation.

Top Noted Publications

Segregation and aggregation behavior of impurity atoms at grain boundaries of BeO: A first-principles study

  • Authors: Xuejie Wang, Teng Shen, Canglong Wang, Kai He, Zhaocang Meng*, et al.
    Journal: Journal of Nuclear Materials
    Year: 2025

Screening and manipulation by segregation of dopants in grain boundary of Silicon carbide: First-principles calculations

  • Authors: Z.C. Meng, C.L. Wang, Y.L. Wang, et al.
    Journal: Ceramics International
    Year: 2023

First-principles investigations of oxygen interaction with hydrogen/helium/vacancy irradiation defects in Tiā‚ƒAlCā‚‚

  • Authors: Zhaocang Meng, Canglong Wang, Jitao Liu, Yinlong Wang, Xiaolu Zhu, Lei Yang, Liang Huang
    Journal: Physical Chemistry Chemical Physics
    Year: 2021

New insight into the interaction between divacancy and H/He impurity in Tiā‚ƒAlCā‚‚ by first-principles studies

  • Authors: Zhaocang Meng, Canglong Wang, Jitao Liu, Yinlong Wang, Xiaolu Zhu, Lei Yang, Liang Huang
    Journal: Physical Chemistry Chemical Physics
    Year: 2020

Deep potential for a face-centered cubic Cu system at finite temperatures

  • Authors: Y.Z. Du, Z.C. Meng, Q. Yan, et al.
    Journal: Physical Chemistry Chemical Physics
    Year: 2022

 

Yuhui Wang | Experimental methods | Best Researcher Award

Prof. Yuhui Wang | Experimental methods | Best Researcher Award

Yanshan University | China

Professor Yuhui Wang is a distinguished academic and researcher in the field of Materials Science and Mechanical Engineering, currently serving as a Professor at the School of Mechanical Engineering, Yanshan University (YSU), China. With over two decades of research and academic experience, Professor Wang has made significant strides in understanding and innovating material microstructures for advanced industrial applications.

šŸ‘Øā€šŸŽ“Profile

Scopus

ORCID

šŸŽ“ Early Academic Pursuits

Professor Wang embarked on his academic journey at Yanshan University, where he earned his Bachelor of Engineering in 2003, followed by a Master’s degree in 2006, and culminated in a PhD in 2012, all in Materials Science and Engineering. His solid academic foundation laid the groundwork for his lifelong pursuit of excellence in metallurgical research and materials design.

šŸ§‘ā€šŸ”¬ Professional Endeavors

Professor Yuhui Wang has demonstrated a consistent trajectory of professional growth through pivotal roles in both academic and research domains. Currently a Professor (2020–Present) at the School of Mechanical Engineering, YSU, he previously served as a Senior Researcher (2012–2019) at the National Engineering Research Center for Equipment and Technology of C.S.R., YSU, and as a Research Associate (2006–2010) at the School of Materials Science and Engineering, YSU. These positions have established him as a leader in academic research, fostering industry collaboration and integrating theoretical innovation with practical engineering applications.

šŸ”¬ Contributions and Research Focus

Professor Wang’s research is centered on the microstructure-processing-property relationships in metallic materials, aiming to design advanced materials through microstructural engineering. Since 2021, he has led pioneering work in a novel deformation method titled ā€œDynamic Offsets and Shear Force Adjustment Rolling (DS Rolling)ā€. This technique has shown promising results in grain refinement and texture homogenization in pure metals like copper (Cu) and tantalum (Ta). He employs state-of-the-art experimental techniques such as electron microscopy and X-ray diffraction, underscoring his technical expertise and commitment to methodological rigor.

šŸŒ Impact and Influence

With 110 published papers, including 1 Hot Paper and 2 Highly Cited Papers, Professor Wang has made an undeniable impact on the field. His work has garnered 1,860 citations, reflecting strong academic reception and influence. His H-index of 21 confirms both the quality and consistency of his research contributions over time. Moreover, he holds 40 authorized patents, including 1 U.S. patent, a testament to the practical relevance and innovation of his work in both academic and industrial settings.

šŸ“š Academic Cites

His research outputs have appeared in top-tier journals, with frequent citations reflecting his status as a reliable source of scientific knowledge. The presence of Highly Cited Papers signifies that his work is used as a foundation for ongoing research, showcasing his role in advancing scientific frontiers.

šŸ› ļø Research Skills

Professor Wang is recognized for his exceptional skills in experimental design, data analysis, and advanced characterization techniques. His ability to translate microstructural insights into functional engineering solutions marks him as a leading innovator in material processing. His recent focus on DS Rolling exemplifies a forward-looking research mindset, integrating novel mechanical deformation methods with practical application potential.

šŸ‘Øā€šŸ« Teaching Experience

Professor Wang has an extensive teaching and supervision portfolio. He is currently supervising 5 PhD students, 1 postdoctoral fellow, and 9 master’s students, while having mentored 2 PhD and 10 master’s graduates in the past. His role as a mentor and educator is deeply valued, and he consistently inspires young scholars to engage with cutting-edge materials research.

🌟 Legacy and Future Contributions

Professor Yuhui Wang’s legacy is built on a foundation of scientific excellence, innovation, and mentorship. His visionary research in material processing techniques like DS Rolling, combined with his strong academic influence, ensures that he will continue to shape the next generation of materials science. His ongoing work promises advancements in sustainable materials development, industrial processing techniques, and deeper insights into the structure-property-performance nexus in metals.

Top Noted Publications

Pure copper plate achieving high synergetic strength and electrical conductivity via a novel dynamic offsets and shear force adjustment cryorolling

  • Authors: Longfei Xu, Renhao Wu, Haiming Zhang, Xin Xue, Yan Peng, Yuhui Wang, Hyoung Seop Kim
    Journal: Materials Science and Engineering: A
    Year: 2025

The improvement and verification of fluid dynamics simulation on temperature uniformity during heat treatment of ring pieces

  • Authors: Mingzhe Xu, Jinfu Zhao, Li Wang, Tengxiang Zhao, Ling Kong, Zhipeng Li, Zhixin Huang, Yuhui Wang
    Journal: Heliyon
    Year: 2024

Microstructure and mechanical properties of pure copper plate processed by novel dynamic offsets and shear force adjustment rolling

  • Authors: Longfei Xu, Kai Yu, Li Wang, Shizhao Quan, Ling Kong, Haokun Yang, Xiaodan Zhang, Yan Peng, Yuhui Wang
    Journal: Journal of Materials Research and Technology
    Year: 2024

Cryogenic toughness in a low-cost austenitic steel

  • Authors: Y. Wang, Y. Zhang, A. Godfrey, J. Kang, Y. Peng, T. Wang, N. Hansen, X. Huang
    Journal: Communications Materials
    Year: 2021

Hot-Deformation Behavior and Processing Maps of a Low-Carbon Fe-2 wt% Nb Steel

  • Authors: Wentao Luo, Pengzhan Cai, Ziyong Hou, Yuhui Wang, Ling Zhang, G.L. Wu
    Journal: Metals
    Year: 2021

Achieving high ductility in the 1.7 GPa grade CoCrFeMnNi high-entropy alloy at 77 K

  • Authors: S.J. Sun, Y.Z. Tian, H.R. Lin, H.J. Yang, X.G. Dong, Y.H. Wang, Z.F. Zhang
    Journal: Materials Science and Engineering: A
    Year: 2019