Faustino WAHAIA | Quantum Physics | Best Researcher Award

Dr. Faustino WAHAIA | Quantum Physics | Best Researcher Award

Millennium Institte for Research in Optics (MIRO), Institute of Physics , ANID and PUC | Chile

Dr. Faustino Wahaia is a distinguished researcher and academic professional in the fields of lasers, quantum optics, and terahertz (THz) photonics. He is currently affiliated with the Institute of Physics at Pontificia Universidad Católica de Chile as part of the Millennium Institute for Research in Optics (MIRO). His research has had a significant impact in the realms of biomedical applications, nanomaterials characterization, and advanced laser technologies. Faustino’s multidisciplinary expertise integrates lasers, ultrafast systems, and photonics, contributing to both theoretical and practical advancements.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 📚

Dr. Wahaia’s academic journey has been remarkable, marked by a robust educational foundation across multiple international institutions. He earned his Ph.D. in Engineering Physics from the University of Porto in Portugal, with his dissertation focusing on spectroscopic and imaging techniques using the terahertz frequency band for biomedical applications. His pursuit of knowledge began with an MSc in Physics Engineering from the University of Lisbon – IST, where he specialized in the diagnostic and control of terawatt laser systems. Faustino’s academic journey expanded further through his research at University of Sofia and the Center for Physical Sciences and Technology in Vilnius, Lithuania. His early academic pursuits laid the groundwork for his cutting-edge research in THz photonics and quantum optics.

Professional Endeavors 🏢

Throughout his career, Dr. Wahaia has held prestigious positions at various research institutes across the globe. He has contributed significantly to the Institute for Nanotechnology and Nano-Sciences in Porto, Portugal, and Center for Physical Sciences and Technology in Vilnius, Lithuania. His work has focused on developing and characterizing ultrashort pulse lasers, THz spectroscopic systems, and biomedical imaging technologies. His role in the Institute for Research and Innovation in Health (i3S) reflects his commitment to applying his scientific expertise to real-world problems in biomedical science, particularly through terahertz techniques for nanomaterials and biomedical studies.

Contributions and Research Focus 🔬

Dr. Wahaia’s research spans several cutting-edge technologies, such as ultrafast lasers, THz communications, and spectroscopic techniques like Raman spectroscopy and ellipsometry. His work in terahertz photonics for biomedical applications, hazardous residue detection, and pharmaceutical quality assessment has had substantial contributions to fields such as materials science, food safety, and security. Additionally, Faustino has delved deeply into quantum optics, advancing the understanding of laser-matter interactions, plasma physics, and spectral selection devices.

Impact and Influence 🌍

Dr. Wahaia’s work has influenced several scientific and industrial domains, notably in biomedical diagnostics, photonics-based security systems, and advanced materials research. His terahertz imaging systems and laser-based technologies have been groundbreaking in medical imaging and nanomaterials characterization. Faustino’s contributions to nanotechnology and THz photonics have significantly shaped the research landscape in these areas. Through his involvement with international organizations and his role in the Millennium Institute for Research in Optics (MIRO), his influence extends globally, positioning him as a key leader in optical and quantum sciences.

Academic Cites 📊

Dr. Wahaia’s research is widely recognized, with numerous citations in highly regarded journals, particularly in optics, quantum photonics, and terahertz science. His peer-reviewed publications in journals such as Frontiers in Physics, Sensors, and MDPI highlight the impact of his contributions to lasers and photonics technologies. Additionally, Faustino has been instrumental in editing influential books such as “Ellipsometry: Principles and Techniques for Materials Characterization” and “Quantum Electronics”, which have further solidified his standing in the scientific community.

Research Skills 💡

Dr. Wahaia possesses a broad range of highly specialized research skills, including:

  • Laser System Design: Expertise in developing terawatt lasers and related technologies.
  • Terahertz Spectroscopy: In-depth experience in terahertz wave generation, detection, and characterization.
  • Biomedical Imaging: Significant contributions to Optical Computed Tomography (OCT) and Raman spectroscopy for medical applications.
  • Materials Characterization: Pioneering work in THz photonics for the study of nanomaterials and pharmaceutical quality control.

His technical expertise spans ultrafast lasers, laser-plasma interactions, pulse amplification techniques, and fiber-coupled terahertz systems.

Teaching Experience 🎓

Dr. Wahaia has made substantial contributions to education through his roles as a doctoral adviser and master’s student mentor. He has supervised cutting-edge research in areas like atomic force microscopy and Raman spectroscopy for biomedical applications. He has taught engineering physics at the University of Maputo and radiological physics at the Higher Institute of Health Sciences of Maputo, contributing significantly to the education and development of future scientists in quantum optics and laser technologies.

Awards and Honors 🏅

Throughout his career, Faustino has been recognized with several prestigious awards and fellowships:

  • Ph.D. Fellowship in Physics Engineering focusing on lasers and quantum optics.
  • MSc Fellowship in diagnostics and wavefront control of terawatt lasers.
  • PostDoc Grant in Ultrafast Lasers and THz Photonics, contributing to biomedical and nanomaterial studies.

These honors reflect his academic excellence and his dedication to advancing the fields of optics, photonics, and terahertz science.

Legacy and Future Contributions 🔮

Dr. Faustino Wahaia’s legacy in laser and THz photonics research is set to continue shaping the future of biomedical imaging, nanomaterials research, and photonics-based technologies. As a mentor, his guidance is ensuring that the next generation of scientists will carry forward his contributions. His future work is poised to further advance applications of terahertz waves in security, agriculture, and pharmaceuticals, and to develop new solutions that address global challenges in healthcare and environmental safety.

Publications Top Notes

Optical properties of millimeter-size metal-organic framework single crystals using THz techniques

  • Authors: Faustino Wahaia, Irmantas Kašalynas, Daniil Pashnev, Gintaras Valušis, Andrzej Urbanowicz, Mindaugas Karaliunas, Dinesh Pratap Singh, Sascha Wallentowitz, Birger Seifert
    Journal: Journal of Molecular Structure
    Year: 2025

Terahertz spectroscopy and imaging for gastric cancer diagnosis

  • Authors: Faustino Wahaia, Irmantas Kašalynas, Linas Minkevičius, Catia Carvalho Silva, Andrzej Urbanowicz, Gintaras Valušis
    Journal: Journal of Spectral Imaging
    Year: 2020

Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues

  • Authors: Irmantas Kašalynas, Rimvydas Venckevičius, Linas Minkevičius, Aleksander Sešek, Faustino Wahaia, Vincas Tamošiūnas, Bogdan Voisiat, Dalius Seliuta, Gintaras Valušis, Andrej Švigelj, et al.
    Journal: Sensors
    Year: 2016

 

Latif Ur Rahman | Quantum Technologies | Best Researcher Award

Assist. Prof. Dr. Latif Ur Rahman | Quantum Technologies | Best Researcher Award

PhD Scholar at University of Malakand | Pakistan

Latif Ur Rahman is a passionate physicist currently pursuing a PhD in Quantum Optics at the University of Malakand, where he is focused on nonlinear optics, photonics, and the study of optical lattices and photonic crystals. With years of academic experience and a strong leadership background, he is dedicated to advancing the field of quantum physics through research and collaboration. His comprehensive approach blends creativity, research skills, and a passion for online learning, social activities, and literature.

👨‍🎓Profile

Early Academic Pursuits 🎓

Latif’s academic journey began at the University of Peshawar, where he earned his Bachelor of Science in Math and Physics (2001-2004). Building on this solid foundation, he continued his studies at the University of Malakand, where he completed his Master of Science in Physics (2005-2007) and later achieved an M.Phil. in Quantum Optics (2012-2015). This progression reflects his dedication and deepening interest in quantum optics and photonics.

Professional Endeavors💼

Latif has been a key member of the Commerce Industry and Technical Education Department/KP-TEVTA since 2009, holding an Assistant Professor position at the GPI Takht Bhai/GCT Mingora Swat. His leadership skills have played a crucial role in team management and research collaboration. His work in this role has allowed him to influence both educational and research environments, demonstrating his ability to balance practical teaching with high-level academic research.

Contributions and Research Focus 🔬

Latif’s research interests lie in Quantum Optics, Nonlinear Optics, and Photonics, with a specific focus on optical lattices, photonic crystals, and coherent control. His PhD thesis, “Coherent Manipulation of Localized Modes of Photonic Crystal Unit Cells and Optical Lattices by Absorption and Dispersion Spectrums,” investigates novel ways to manipulate light at the quantum level. One of his major research papers, “Coherent control of tunneling-based photonic lattice unit cells through an induced chiral atomic medium,” was published in the Chinese Journal of Physics in January 2025. His research continues to explore coherent control, optical unit cells, and chiral atomic media.

Impact and Influence 🌍

Latif’s research holds the potential to significantly influence the world of quantum optics and photonics. By manipulating the properties of optical lattices and unit cells, his work promises to make significant strides in areas such as coherent control and quantum computing. His innovative approach in coherent localization and photonic crystal research is paving the way for advancements in optical communication and quantum technology. His published work and papers under review highlight his potential for making a profound impact in these fields.

Academic Cites 📚

Latif has already begun to make an impact on the academic community, with his work published in top-tier journals such as the Chinese Journal of Physics. His contribution to quantum optics research is cited in relevant academic papers, setting the stage for further recognition. The continued publication of papers, including those currently under review, reflects his growing influence and authority in his field.

Research Skills🔧

Latif demonstrates exceptional research skills, particularly in quantum optics, nonlinear optics, and photonics. He excels in coherent control, optical unit cells, and manipulating optical lattices through chiral atomic media. His ability to develop new experimental methods and advance theoretical understanding in these areas underscores his technical expertise. Latif is also proficient in data analysis, theoretical modeling, and scientific programming, all essential for pushing the boundaries of quantum research.

Teaching Experience 👨‍🏫

Latif has gained valuable teaching experience during his tenure at KP-TEVTA and University of Malakand. He has taught various physics courses, with a particular focus on quantum optics and nonlinear optics. Additionally, his involvement in online learning and training programs demonstrates his versatility as an educator, making complex topics in quantum physics accessible to students at various levels. His pedagogical skills are further backed by certifications in teaching and management training courses.

Awards and Honors 🏅

While not explicitly mentioned in the provided information, Latif’s research excellence, teaching experience, and community involvement point to a bright future in receiving academic awards and research grants. His ongoing contributions to quantum optics and photonics will likely attract further recognition in the near future, especially as his research continues to evolve.

Legacy and Future Contributions 🔮

Looking forward, Latif’s research legacy is bound to make a lasting impact in quantum physics, photonics, and optical control. With several papers under review, he is poised to shape the future of quantum optics, particularly in the manipulation of optical lattices and photonics crystals. His commitment to research, teaching, and collaboration positions him as a future leader in the academic community, ready to make groundbreaking contributions to the quantum revolution.

Publications Top Notes

Coherent control of tunneling-based photonic lattice unit cells through an induced chiral atomic medium

Authors: Latif Ur Rahman, U. Zakir, Bakht Amin Bacha, Iftikhar Ahmad, Zia Ul Haq

Journal: Chinese Journal of Physics

Year: 2025

 

 

Xuechao Zhai | Chiral symmetry breaking | Best Researcher Award

Prof. Xuechao Zhai | Chiral symmetry breaking | Best Researcher Award

Nanjing University of Science and Technology | China

Xuechao Zhai is a Professor and doctoral advisor at the Department of Applied Physics at Nanjing University of Science and Technology, China. His primary research focuses on condensed matter theory, semiconductor physics, and quantum device design. He is well known for his work on topological phase transitions, quantum transport in low-dimensional structures, and spin and valley control. Over the years, he has contributed significantly to quantum information encoding mechanisms, enhancing low-power quantum devices.

👨‍🎓Profile

Scopus 

ORCID

Early Academic Pursuits 🎓

Xuechao Zhai’s academic journey began at Xiangtan University, where he obtained his B.S. in Physics in 2009. He continued his studies at Nanjing University, earning his Ph.D. in Physics in 2014. His early academic years were marked by a keen interest in quantum mechanics and material science, which laid the foundation for his pioneering research in condensed matter physics.

Professional Endeavors 💼

Following his doctoral studies, Zhai took on several roles at Nanjing University of Posts & Telecommunications, where he served as Lecturer (2014–2017) and Associate Professor (2017–2021). His expertise led him to a Visiting Scholar position at the Kavli Institute at Delft University of Technology (2019–2020), where he collaborated on international research projects in the fields of semiconductor physics and quantum transport. In 2021, Zhai was appointed Professor at Nanjing University of Science & Technology, where he continues to mentor graduate students and advance his research in quantum devices.

Contributions and Research Focus 🔬

Zhai’s research focuses primarily on topological phase transitions and quantum transport in low-dimensional structures. His work in spin and valley control and the design of quantum devices has significantly influenced the understanding of spintronics and valleytronics. He is particularly known for his studies on the electrical control of spin polarization and valley-mediated effects, which have important applications in quantum computing and advanced material design.

Impact and Influence 🌍

Xuechao Zhai’s research has garnered recognition in both the academic and scientific communities. His work has been published in top journals, such as Nature Communications, Advanced Functional Materials, and Physical Review series. His contributions to the understanding of quantum transport and the development of low-power quantum devices have positioned him as a leading figure in the field of semiconductor physics. Zhai has also been awarded several prestigious National Natural Science Foundation projects and has earned accolades such as the “Youth Top Talent” program at Nanjing University of Science and Technology.

Research Skills 📚

His research is widely referenced in the scientific community, contributing significantly to advancements in quantum device design. Zhai’s proficiency in condensed matter theory, material characterization, and theoretical modeling allows him to approach complex problems from a multidisciplinary perspective. His work on spin-orbit coupling and valleytronics continues to shape current research trends.

Teaching Experience 📖

As a doctoral advisor and professor, Zhai has mentored numerous graduate students and postdoctoral researchers. He emphasizes the importance of critical thinking, research innovation, and scientific rigor. His teaching approach integrates advanced theoretical concepts with hands-on experience in quantum device fabrication, preparing students to contribute to the next generation of quantum scientists and material engineers. Zhai’s leadership in the classroom is complemented by his role in guiding the future of applied physics research.

Awards and Honors 🏆

Xuechao Zhai has been recognized for his excellence in both research and teaching. His achievements include:

  • Four National Natural Science Foundation projects, including three general projects and one youth fund.
  • A Jiangsu Provincial Natural Science Foundation project.
  • Selection for the “Youth Top Talent” program at Nanjing University of Science and Technology in 2021.
  • Recognition as an outstanding young backbone teacher in the “Qinglan Project” of Jiangsu Province in 2019.

These accolades reflect his outstanding contributions to the scientific community and his commitment to nurturing young researchers.

Legacy and Future Contributions 🔮

Xuechao Zhai’s research is shaping the future of quantum devices, spintronics, and low-dimensional materials. His work on topological materials and quantum transport is paving the way for the development of next-generation quantum computing technologies. As he continues to make strides in quantum information encoding and device design, Zhai’s legacy will likely influence future advancements in material science and quantum physics. His ongoing dedication to pushing the boundaries of theoretical physics ensures that he will remain a key figure in the global scientific community.

Publications Top Notes

Realization of robust Ohmic contact for semiconducting black arsenic by coupling with graphene

  • Authors: Xinjuan Cheng, Xuechao Zhai
    Journal: Chinese Physics B, 2025

Large Anomalous Hall Effect in a Noncoplanar Magnetic Heterostructure

  • Authors: Anke Song, Jine Zhang, Yequan Chen, Rong Zhang, Xuefeng Wang
    Journal: Advanced Functional Materials, 2025

Defect-induced helicity dependent terahertz emission in Dirac semimetal PtTe2 thin films

  • Authors: Zhongqiang Chen, Hongsong Qiu, Xinjuan Cheng, Rong Zhang, Xuefeng Wang
    Journal: Nature Communications, 2024

Rashba spin splitting based on trilayer graphene systems

  • Authors: Xinjuan Cheng, Liangyao Xiao, Xuechao Zhai
    Journal: Physical Review B, 2024

Proximity-induced diversified magnetic states and electrically controllable spin polarization in bilayer graphene: Towards layered spintronics

  • Authors: Xuechao Zhai, Yaroslav M. Blanter
    Journal: Physical Review B, 2022

 

Polosan Silviu | Quantum Computing | Best Researcher Award

Dr. Polosan Silviu | Quantum Computing | Best Researcher Award

NIMP | Romania

E. Poloșan Silviu Pavel is a Senior Researcher I at the National Institute of Materials Physics (NIMP Bucharest-Magurele), with a long-standing career in Condensed Matter Physics, particularly in the fields of optics, spectroscopy, and OLED technology. With over 25 years of experience, his work spans from research assistant to senior researcher, with a notable focus on organometallic compounds and rare-earth ion spectroscopy. His significant contributions in material science and nanotechnology have earned him global recognition.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 🎓

Pavel’s academic journey began with a Ph.D. in Physics from the prestigious Bucharest University, where he specialized in Optics and Spectroscopy (1995-2002). His foundational education was strengthened during his undergraduate studies, where he earned a Physicist degree from the Faculty of Physics at Bucharest University (1988-1993), focusing on plasma physics, laser spectroscopy, and optics. During his early academic years, he also attended the “Iacob Muresianu” High School in Blaj, excelling in mathematics and physics.

Professional Endeavors 🧑‍🔬

Since 1993, Pavel has been a dedicated part of NIMP Bucharest-Magurele, where he has held various prestigious roles. Starting as a Research Assistant, he grew into a Senior Researcher responsible for crystal growth and scintillating detector studies. Over the years, he has been heavily involved in organometallic compound synthesis, OLED technology, and magneto-optical spectroscopy of rare-earth ions. His ability to lead and manage international collaborations has propelled his career, from coordinating 9 national and international projects to collaborating with high-level research institutes like ENEA Frascati Rome and Universität Roma Tre.

Contributions and Research Focus 🔬

Pavel’s research contributions cover a broad spectrum of materials science and condensed matter physics. He has extensively studied organometallic compounds for OLED applications, magneto-optical properties of rare-earth ions, and ferromagnetic materials. His work on amorphous and polycrystalline Bi4Ge3O12 materials has led to important insights into optical properties, structural changes, and energy absorption dynamics. Additionally, his studies on metallic nanoparticles and nanoclusters in alkali halide crystals have significantly advanced our understanding of nanomaterials.

Impact and Influence 🌍

Pavel’s research has had a notable global impact, as demonstrated by his 67 scientific papers (including 38 as the corresponding author) and 263 citations in leading journals. His contributions have shaped the fields of OLED technology and material characterization. Pavel’s involvement in international collaborations has enhanced the visibility and reach of his work, helping to shape the future of advanced material applications. His role as a supervisor for PhD theses has allowed him to pass on his knowledge, mentoring future leaders in materials science.

Research Skills 🔧

Pavel is a highly skilled researcher in areas such as:

  • Synthesis and characterization of organometallic compounds for OLED applications
  • Spectroscopic analysis of rare-earth doped materials
  • Magneto-optical studies of materials
  • Synthesis of metallic nanoclusters and nanoparticles
  • Crystal growth techniques for scintillating materials
    His deep understanding of these areas enables him to bridge theoretical and experimental approaches, driving innovative solutions in material science.

Teaching Experience 🧑‍🏫

As an academic supervisor, Pavel has guided PhD students on projects ranging from semiconducting organic materials to polymeric nanocomposites. He has imparted knowledge in both material synthesis and optical characterization techniques, contributing to the professional growth of students. His involvement in international research collaborations also allows him to teach students the importance of global scientific cooperation.

Awards and Honors 🏆

Pavel’s scientific achievements have earned him several prestigious awards, including the Academy Prize “Dragomir Hurmuzescu” for Physics in 2000. This award recognized his work on point defects and metallic nanoparticles in KCl crystals. Pavel has also earned recognition from international institutes, having received support for several high-impact research projects, including collaborations with ENEA Frascati and Romanian-Japan projects. His career is a testament to his outstanding contributions to science.

Legacy and Future Contributions 🌱

Pavel’s legacy is firmly established in materials science and condensed matter physics. His work on OLED technologies, organometallic compounds, and advanced spectroscopy continues to inspire future research in these areas. As a supervisor and project leader, he has cultivated a strong foundation for future generations of scientists to build upon. Moving forward, Pavel aims to expand his research into interdisciplinary areas such as nanotechnology and bioengineering, further enhancing the impact of his work on global technological advancements.

Publications Top Notes

  • Phase Transitions in Dimer/Layered Sb-Based Hybrid Halide Perovskites: An In-Depth Analysis of Structural and Spectroscopic Properties

    • Authors: I.C. Ciobotaru, Iulia Corina; C.C. Ciobotaru, Constantin Claudiu; C.M. Bartha, Cristina M.; S. Poloșan, Silviu; C. Beșleagă, Cristina
    • Journal: Advanced Optical Materials
    • Year: 2025
  • Versatile techniques based on the Thermionic Vacuum Arc (TVA) and laser-induced TVA methods for Mg/Mg:X thin films deposition – A review

    • Authors: R. Vlǎdoiu, Rodica; A. Mandeș, Aurelia; V. Dinca, Virginia; C.C. Ciobotaru, Constantin Claudiu; S. Poloșan, Silviu
    • Journal: Journal of Magnesium and Alloys
    • Year: 2024
  • Structural and magneto-optical investigations of citrate sol–gel derived barium hexaferrite nanocrystalline powder

    • Authors: M. Secu, Mihail; C.E. Secu, Corina Elisabeta; E. Matei, Elena; C. Radu, Cristian; S. Poloșan, Silviu
    • Journal: Journal of Alloys and Compounds
    • Year: 2024
  • Microstructural and Morphological Characterization of the Cobalt-Nickel Thin Films Deposited by the Laser-Induced Thermionic Vacuum Arc Method

    • Authors: V. Dinca, Virginia; A. Mandeș, Aurelia; R. Vlǎdoiu, Rodica; V. Ciupinǎ, Victor; S. Poloșan, Silviu
    • Journal: Coatings
    • Year: 2023
  • Organic Light-Emitting Diodes with Electrospun Electrodes for Double-Side Emissions

    • Authors: I.C. Ciobotaru, Iulia Corina; M.M. Enculescu, Monica Maria; S. Poloșan, Silviu; I. Enculescu, Ionuţ; C.C. Ciobotaru, Constantin Claudiu
    • Journal: Micromachines
    • Year: 2023