Yang Lei | High energy physics | Best Researcher Award

Prof. Yang Lei | High energy physics | Best Researcher Award

Associate Professor at Soochow University | China

Prof. Yang Lei is a distinguished theoretical physicist at the Institute of Advanced Study, Soochow University, specializing in black hole physics, holography, and quantum field theory. With extensive training and research experience from world-renowned institutions such as Peking University, Durham University, and Niels Bohr Institute, Prof. Lei is recognized for his cutting-edge work on AdS/CFT correspondence and non-relativistic holography, making him a rising voice in the global high-energy physics community.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Prof. Lei began his academic journey at the prestigious Yuanpei College, Peking University, earning his Bachelor’s degree in 2011, with a second major in Mathematics a testament to his foundational strength in formal theoretical reasoning. He pursued his MSc in Particles, Strings, and Cosmology at Durham University, supervised by Simon Ross, followed by a PhD in Mathematics, with a focus on Singularities in holographic non-relativistic spacetimes an area of deep relevance in modern quantum gravity.

👨‍🔬 Professional Endeavors

Following his PhD, Prof. Yang Lei embarked on an impressive journey through several prestigious postdoctoral positions at top-tier institutions including the Institute of Theoretical Physics, CAS, University of the Witwatersrand, Niels Bohr Institute, and Kavli Institute of Theoretical Science (KITS), UCAS. In 2022, he was appointed as an Associate Professor at Soochow University, where he continues to lead cutting-edge research and mentor young physicists, contributing meaningfully to the field of theoretical high-energy physics.

🔬 Contributions and Research Focus

Prof. Lei’s research is centered on black holes, holography, AdS/CFT duality, non-relativistic limits of field theories, and quantum gravity. His studies on spin matrix theory, EVH (Extremal Vanishing Horizon) black holes, and modular factorization in superconformal indices showcase his theoretical versatility and original insights into foundational questions of physics.

🌍 Impact and Influence

Prof. Lei has delivered more than 20 invited talks at prestigious international conferences, including String 2016, Tsinghua University, and Joburg Workshop on String Theory. His presence at academic forums and black hole workshops affirms his growing influence in the global theoretical physics community. He also demonstrates leadership in academic outreach through organizing workshops like the SUIAS HEP Workshop and KITS Summer School, promoting collaborative learning in high-energy physics.

📈 Academic Citations

While specific citation metrics were not detailed in the current profile, Prof. Lei’s consistent conference participation, grants awarded, and long-term collaborations with major institutions indicate a highly regarded academic presence, especially within holography and black hole research circles.

🛠️ Research Skills

Prof. Yang Lei possesses a sophisticated toolkit of theoretical and mathematical techniques, including AdS/CFT duality calculations, non-relativistic quantum field theory, spin matrix theory analysis, black hole thermodynamics, modular invariance, and superconformal indices, as well as advanced perturbation theory and resurgence. These research capabilities enable him to tackle some of the most complex and unsolved problems in quantum gravity and holographic dualities, reinforcing his role as a leading thinker in high-energy theoretical physics.

👨‍🏫 Teaching Experience

Prof. Yang Lei is a highly engaged educator, teaching core physics courses in English at Soochow University, such as Quantum Mechanics (Autumn 2023) and Solid State Physics (Spring 2023). He also contributed to the KITS Summer School, guiding students on black hole microstates and the information paradox. During his PhD, he served as a Teaching Assistant at Durham University, showcasing his well-rounded dedication to both academic instruction and research mentorship in theoretical physics.

🏅 Awards and Honors

Prof. Yang Lei‘s exceptional contributions have earned him prestigious awards and competitive grants, such as the National Natural Science Foundation of China Young Researcher Grant (2024–2026), the China Postdoc Surface Grant (2021–2022), and the Overseas Postdoc Introduction and Communication Grant (2016–2018). He also received the Peter Rowe Memorial Postgraduate Prize (2012) and the Durham Teaching and Learning Award (UK HEA Associate Fellowship, 2016). These accolades highlight his scholarly excellence, peer recognition, and international collaboration.

🌟 Legacy and Future Contributions

With a solid academic foundation, global collaborations, and an ever-expanding research portfolio, Prof. Yang Lei is on a trajectory to become a leading voice in quantum gravity and holography. His future contributions are expected to shape our understanding of black hole dynamics, non-AdS holography, and quantum field theories under extreme conditions. He is well-positioned to continue his impactful journey as a scholar, educator, and thought leader in modern theoretical physics.

Publications Top Notes

Conformal mapping of non-Lorentzian geometries in SU(1, 2) Conformal Field Theory

  • Authors: Stefano Baiguera, Troels Harmark, Yang Lei, Ziqi Yan
    Journal: Journal of High Energy Physics
    Year: 2025

Modularity in d > 2 free conformal field theory

  • Authors: Yang Lei, Sam van Leuven
    Journal: Journal of High Energy Physics
    Year: 2024

Quasinormal modes of C-metric from SCFTs

  • Authors: Yang Lei, Hongfei Shu, Kilar Zhang, Ruidong Zhu
    Journal: Journal of High Energy Physics
    Year: 2024

Modular factorization of superconformal indices

  • Authors: Vishnu Jejjala, Yang Lei, Sam van Leuven, Wei Li
    Journal: Journal of High Energy Physics
    Year: 2023

The Panorama of Spin Matrix theory

  • Authors: Stefano Baiguera, Troels Harmark, Yang Lei
    Journal: Journal of High Energy Physics
    Year: 2023

 

 

André Aimé ATANGANA LIKENE | High energy physics | Best Researcher Award

Dr. André Aimé ATANGANA LIKENE | High energy physics | Best Researcher Award

Research Officer at Research Centre for Nuclear Science and Technology, Institute of Geological and Mining Research | Cameroon

Dr. Atangana Likéné André Aimé is a highly accomplished Research Officer specializing in Nuclear Physics, Dosimetry, and Radiation Protection. Holding a PhD in Physics from the University of Yaoundé I, his academic journey has been marked by excellence in both teaching and research. He currently works at the Research Center of Nuclear Science and Technology, part of the Institute of Geological and Mining Research, contributing to cutting-edge scientific endeavors in the field of nuclear science.

👨‍🎓Profile

Scopus 

ORCID

Early Academic Pursuits 🎓

Dr. Atangana’s academic foundation was built at the University of Douala, where he completed his Master’s Degree in Physics with a focus on Physics of Matter and Radiation. His initial research projects, including an experimental study on atoms and molecules in strong laser fields, showcased his deep engagement with experimental physics. He also earned a D.E.A in Physics from the same university, demonstrating his growing specialization in mathematical physics.

His stellar academic performance earned him multiple Academic Excellence Scholarships, which facilitated his progression through advanced studies. With a Bachelor’s degree in Physics and Mechanics, he laid the groundwork for a future in high-level research and teaching.

Professional Endeavors 💼

Dr. Atangana’s professional journey spans both academic teaching and practical research applications. Early in his career, he contributed as a part-time high school teacher, teaching Physics and Mathematics to secondary school students. His teaching journey expanded into higher education where he worked as a part-time lecturer at Einstein Group, and later at the University of Yaoundé I, where he currently teaches Nuclear and Atomic Physics to undergraduate students. Simultaneously, his professional experience has been diverse, from working at the National Radiation Protection Agency (NRPA) to being part of the Institute of Geological and Mining Research, where he works with ionizing radiation metrology in alpha, beta, and gamma spectrometry.

Contributions and Research Focus 🔬

Dr. Atangana’s research focuses on Nuclear Physics, Quantum Chromodynamics, and Particle Physics, particularly in hadron spectroscopy and the quark model. His doctoral research on the effect of topological defects on hadron spectra and quark confinement has significantly advanced the field. He also explores non-gravitational scalar fields and their impact on particle interactions in a Schwarzschild-like space-time. His contributions also span environmental radiation studies, where he has analyzed indoor radon concentrations and measured background radiation in uranium-rich zones in Cameroon.

Impact and Influence 🌍

Dr. Atangana’s research has had a lasting impact on both the academic community and global scientific organizations. He is a member of prominent scientific societies such as the Cameroon Radiological Protection Society (CRPS), African School of Physics (ASP), and the American Physical Society (APS). His collaborations with international research bodies like the International Atomic Energy Agency (IAEA) and his presentations at global conferences have enhanced international cooperation in radiation protection and nuclear science. His scientific publications in leading journals have advanced nuclear energy research and theoretical physics, focusing on heavy quarkonium, meson spectroscopy, and spin interactions in topological defect spaces.

Awards and Honors 🏆

Dr. Atangana has earned numerous awards and recognitions, including multiple Academic Excellence Scholarships and the distinction of being the Top of the 2015 Master’s Degree Promotion at the University of Douala. His sustained commitment to academic excellence and scientific discovery continues to earn him accolades both locally and internationally.

Teaching Experience 🍎

Dr. Atangana has substantial experience in teaching at both secondary and higher education levels. His roles as a part-time high school teacher and later as a university lecturer in Nuclear Physics reflect his passion for educating the next generation of physicists. He has been involved in mentoring undergraduate students and preparing course materials in Atomic and Nuclear Physics.

Research Skills 🛠️

With expertise in symbolic computations, scientific computing, and mathematical modeling, Dr. Atangana is proficient in tools such as Python, MATLAB, SageMath, Maple, and FORTRAN. His proficiency in machine learning applications for hadron spectroscopy is a key strength in his research. He also has hands-on experience in spectrometry and radiation protection techniques, making him an invaluable asset to his field.

Legacy and Future Contributions 🔮

Looking ahead, Dr. Atangana aims to continue his pioneering work in nuclear physics and radiation protection. He is committed to exploring new dimensions of quantum chromodynamics, advancing particle physics models, and contributing to sustainable energy solutions. His ongoing research promises to shape the future of nuclear science, particularly in the context of global radiation safety and environmental health. His future contributions will undoubtedly further his legacy in physics research and education, inspiring young minds and influencing both scientific communities and policy-making bodies in radiation protection.

Publications Top Notes

Effect of spin-spin interaction and fractional order on heavy pentaquark masses under topological defect space-times

  • Authors: D. Nga Ongodo, A. A. Atangana Likéné, J. M. Ema’a Ema’a, P. Ele Abiama, G. H. Ben-Bolie
    Journal: The European Physical Journal C
    Year: 2025

Hyperbolic tangent form of sextic potential in Bohr Hamiltonian: Analytical approach via extended Nikiforov–Uvarov and Heun equations

  • Authors: D. Nga Ongodo, A. Atangana Likéné, A. Zarma, J. M. Ema’a Ema’a, P. Ele Abiama, G. H. Ben-Bolie
    Journal: International Journal of Modern Physics E
    Year: 2025

Angular momentum dependence of nuclear decay of radon isotopes by emission of 14^{14}C nuclei and branching ratio relative to α\alpha -decay

  • Authors: A. A. Atangana Likéné, J. E. Ndjana Nkoulou II, Saïdou
    Journal: The European Physical Journal Plus
    Year: 2025

Non-compact extra dimensions and flavor dependence of cc̄ and bb̄ mesons masses in a hot QCD medium with lattice, LO and NLO parametrizations of the Debye mass

  • Authors: A. A. Atangana Likéné, L. B. Ungem, D. C. Mbah, D. Nga Ongodo, R. Houzibe, F. B. Djeuyi Ndafeun
    Journal: Modern Physics Letters A
    Year: 2025

Quantum chromodynamics Lagrangian density and SU(3) gauge symmetry: A fractional approach

  • Authors: A. A. Atangana Likéné, D. Nga Ongodo, P. Mah Tsila, A. Atangana, G. H. Ben-Bolie
    Journal: Modern Physics Letters A
    Year: 2024

 

 

 

Sunil Kumar Maurya | The Relativity theory | Member

Assoc Prof Dr. Sunil Kumar Maurya | The Relativity theory | Member

PHD at IIT Roorkee, India

Dr. Sunil Kumar Maurya is an Associate Professor and Assistant Dean for Graduate Studies and Research at the University of Nizwa, Oman. With a Ph.D. in Mathematics from IIT Roorkee, India, his expertise lies in Differential Equations, Mathematical Physics, and General Relativity. He has taught a wide range of courses and supervised numerous graduation projects and international Ph.D. students. Dr. Maurya has presented and attended conferences globally, contributing significantly to research in cosmology, astrophysics, and modified gravity theories. With over 3955 Google Scholar citations, he continues to advance the field through extensive publications and funded research projects.

Professional Profiles:

Academic Qualifications

Ph.D. in Mathematics, IIT Roorkee – India, March 2013 M.Sc. in Mathematics, BHU – India, 2008 B.Sc. in Mathematics and Physics, Lucknow University – India, June 2006

Position/Designation: Assistant Dean for Graduate Studies and Research, and Associate Professor Department: Department of Mathematical and Physical Sciences College: Arts and Sciences University: University of Nizwa, Sultanate of Oman

Research interests:

Differential Equations, Similarity Transformations Method, Exact Solutions of Einstein’s Field Equations, Mathematical Physics, Applied Mathematics, General Relativity and Cosmology, Modelling of Compact Stars, Astronomy and Astrophysics, Wormholes, Modified Theory of Gravity, Gravitational Decoupling.

Research Projects

Title: The Astrophysical and Cosmological Implications: From Dark Energy to Modified Theory of Gravity Application Date: December 2019 Amount: 19,504 USD Status: Completed in September 2022 as a Principal Investigator

Research Focus:

Dr. Sunil Kumar Maurya’s research primarily focuses on theoretical astrophysics and general relativity, with a specific emphasis on anisotropic models for compact stars. Through various publications in reputable journals like The European Physical Journal C and Physical Review D, he has extensively explored the properties and behaviors of anisotropic compact objects, investigating their structural characteristics and gravitational effects. Dr. Maurya’s work delves into the intricate interplay between matter and geometry within these compact stellar systems, contributing significantly to our understanding of relativistic astrophysics and providing insights into the fundamental nature of compact stars.

Publications 

  1. Anisotropic models for compact stars, cited by: 162, Publication date: 2015.
  2. Study of anisotropic strange stars in  gravity: An embedding approach under the simplest linear functional of the matter-geometry coupling, cited by: 156, Publication date: 2019.
  3. Generalised model for anisotropic compact starscited by: 145, Publication date: 2016.
  4. A new exact anisotropic solution of embedding class one, cited by: 139, Publication date: 2016.
  5. Anisotropic compact stars in the Buchdahl model: A comprehensive study, cited by: 133, Publication date: 2019.
  6. Charged anisotropic compact star in f (R, T) gravity: A minimal geometric deformation gravitational decoupling approach, cited by: 126, Publication date: 2020.
  7. Generalized relativistic anisotropic compact star models by gravitational decoupling, cited by: 117, Publication date: 2019.
  8. Class I approach as MGD generatorcited by: 102, Publication date: 2020.
  9. Gravitational decoupling minimal geometric deformation model in modified f (R, T) gravity theory, cited by: 97, Publication date: 2020.
  10. Anisotropic relativistic fluid spheres: an embedding class I approach, cited by: 82, Publication date: 2019.

 

 

 

.