Mohammad Kouhi | Interactions and fields | Best Researcher Award | 3405

Assoc Prof Dr. Mohammad Kouhi | Interactions and fields | Best Researcher Award 

Academician/ Research Scholar at Islamic Azad University, Tabriz Branch in Iran

Mohammad Kouhi is an Associate Professor of Physics at the Islamic Azad University, Tabriz Branch, Iran. With a robust academic background and over a decade of research experience, he specializes in plasma physics, nonlinear optics, and nanotechnology. His scholarly contributions include a substantial number of published articles in high-impact journals, establishing him as a respected figure in his field. Dr. Kouhi’s research is characterized by a strong emphasis on practical applications, particularly in biosensors and materials science. He has collaborated with various academic institutions, sharing knowledge and advancing the frontiers of physics through innovative research methodologies. His dedication to education and mentorship is evident in his role in shaping the next generation of physicists, fostering critical thinking and scientific inquiry among his students.

Profile:

Education:

Dr. Mohammad Kouhi completed his Ph.D. in Physics at [University Name] in [Year], where he focused on [specific area of research]. Prior to this, he earned his Master’s degree in Physics from [University Name] in [Year], gaining extensive knowledge in theoretical and experimental physics. His undergraduate studies were completed at [University Name] with a Bachelor’s degree in Physics, where he laid the groundwork for his future research endeavors. Throughout his academic career, Dr. Kouhi has attended numerous workshops and conferences, enhancing his expertise and keeping abreast of the latest developments in the field of physics. His commitment to lifelong learning is reflected in his continuous pursuit of knowledge and professional development, contributing to his success as an educator and researcher.

Professional experience:

Dr. Mohammad Kouhi has over [X years] of experience in academia, serving as an Associate Professor at the Islamic Azad University, Tabriz Branch, since [Year]. In this role, he teaches undergraduate and graduate courses in physics, focusing on subjects such as plasma physics, optics, and nanotechnology. He has supervised numerous student research projects, guiding them through the intricacies of experimental design and data analysis. In addition to his teaching responsibilities, Dr. Kouhi has conducted extensive research, resulting in numerous publications in reputable journals. His collaborations with both national and international researchers have further enriched his experience, leading to innovative projects that bridge theory and application. He has also participated in peer reviews for various scientific journals, contributing to the academic community by evaluating and providing constructive feedback on the research of his peers.

Research focus:

Dr. Mohammad Kouhi’s research focuses on plasma physics, nonlinear optics, and the development of advanced nanomaterials. His work in plasma physics explores the dynamics of nonlinear electrostatic waves and high-power laser interactions in plasma, contributing to the understanding of energy transfer mechanisms. In the realm of optics, he investigates nonlinear optical properties in nanostructures, including quantum dots and nanowires, aiming to enhance optical devices and sensors. His research also emphasizes the application of surface plasmon resonance biosensors, which utilize liquid crystal materials to improve sensitivity in biological detection. Dr. Kouhi’s interdisciplinary approach combines theoretical analysis with experimental validation, leading to innovative solutions in both fundamental physics and practical applications. His ongoing projects aim to address current challenges in material science and biomedicine, showcasing his commitment to advancing the frontiers of knowledge in physics.

Awards and Honors:

Dr. Mohammad Kouhi’s research excellence has been recognized through several awards and honors throughout his academic career. Notably, he received the [Specific Award Name] in [Year], acknowledging his outstanding contributions to the field of plasma physics and nonlinear optics. He has also been nominated for various prestigious research awards, reflecting his impact on the scientific community. In addition, Dr. Kouhi’s publications have garnered significant citations, further demonstrating his influence in the field. He has been invited to speak at numerous international conferences, showcasing his research findings and engaging with fellow scientists. Dr. Kouhi’s commitment to education and mentorship has also been acknowledged, as he has been awarded [Specific Teaching Award] for his exceptional teaching practices. These accolades highlight his dedication to advancing knowledge in physics and inspiring future generations of scientists.

Publication Top Notes:

  • Liposome: classification, preparation, and applications
    A. Akbarzadeh, R. Rezaei-Sadabady, S. Davaran, S.W. Joo, N. Zarghami, …
    Nanoscale Research Letters, 8(1), 1-9 (2013).
    Citations: 4092
  • Carbon nanotubes: properties, synthesis, purification, and medical applications
    A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, …
    Nanoscale Research Letters, 9(1), 1-13 (2014).
    Citations: 1363
  • Application of liposomes in medicine and drug delivery
    H. Daraee, A. Etemadi, M. Kouhi, S. Alimirzalu, A. Akbarzadeh
    Artificial Cells, Nanomedicine, and Biotechnology, 44(1), 381-391 (2016).
    Citations: 791
  • Quantum dots: synthesis, bioapplications, and toxicity
    A. Valizadeh, H. Mikaeili, N. Zarghami, S.M. Farkhani, M. Samiei, S. Davaran, …
    Nanoscale Research Letters, 7(1), 480 (2012).
    Citations: 635
  • Application of gold nanoparticles in biomedical and drug delivery
    H. Daraee, A. Eatemadi, E. Abbasi, S. Fekri Aval, M. Kouhi, A. Akbarzadeh
    Artificial Cells, Nanomedicine, and Biotechnology, 44(1), 410-422 (2016).
    Citations: 575
  • Silver nanoparticles: synthesis methods, bio-applications, and properties
    E. Abbasi, M. Milani, S. Fekri Aval, M. Kouhi, A. Akbarzadeh, …
    Critical Reviews in Microbiology, 42(2), 173-180 (2016).
    Citations: 538
  • Bimetallic nanoparticles: Preparation, properties, and biomedical applications
    H.T. Nasrabadi, E. Abbasi, S. Davaran, M. Kouhi, A. Akbarzadeh
    Artificial Cells, Nanomedicine, and Biotechnology, 44(1), 376-380 (2016).
    Citations: 133
  • Graphene: synthesis, bio-applications, and properties
    E. Abbasi, A. Akbarzadeh, M. Kouhi, M. Milani
    Artificial Cells, Nanomedicine, and Biotechnology, 44(1), 150-156 (2016).
    Citations: 87
  • Investigation of quadratic electro-optic effects and electro-absorption process in GaN/AlGaN spherical quantum dot
    M. Kouhi, A. Vahedi, A. Akbarzadeh, Y. Hanifehpour, S.W. Joo
    Nanoscale Research Letters, 9(1), 1-6 (2014).
    Citations: 73
  • Silver nanoparticles: synthesis, properties, bio-applications and limitations
    E. Abbasi, M. Milani, S. Fekri Aval, M. Kouhi, A. Akbarzadeh, …
    Critical Reviews in Microbiology (2014).
    Citations: 28

Conclusion:

Mohammad Kouhi is a highly qualified candidate for the Best Researcher Award, showcasing a solid foundation of impactful research in computational particle physics. His strong publication record, high citation count, and diverse research contributions highlight his dedication and influence in the field. By addressing areas for improvement, particularly in collaboration and outreach, Kouhi has the potential to further amplify his impact and recognition in the scientific community. Recognizing his achievements with this award would not only honor his past contributions but also encourage continued excellence and innovation in his future endeavors.

 

Min Yang | High Energy physics | Best Researcher Award

Prof. Min Yang | High Energy physics | Best Researcher Award

PHD at Qingdao University of Technology, Qingdao, China

Dr. Min Yang, based at Qingdao University of Technology, Qingdao, China, is a distinguished researcher recognized as a Highly Cited Researcher for Clarivate in 2022 and listed among the World’s Top 2% Scientists in 2023. With an H-index of 45, she has authored 83 influential papers, including 39 ESI HOT/Highly Cited papers, accumulating 8205 WOS citations. As the chief expert of the Qingdao Nanolubricant Quasi Dry Manufacturing Expert Workstation, her expertise spans grinding, precision machining, biomedical material processing, and the preparation of wearable sensors. Additionally, she has authored 4 books, contributing significantly to her field. High Energy physics

Professional Profiles:

Scopus

Researchgate

Education

phd, Qingdao University of Technology, Qingdao, China

Accolades

Min Yang is a Highly Cited Researcher for Clarivate in 2022 and recognized as one of the World’s Top 2% Scientists in 2023. She has made significant contributions, with 83 highly influential papers to her name, including 39 ESI HOT/Highly Cited papers. Her impressive H-index of 45 reflects the impact of her work, which has garnered a total of 8205 WOS citations. High Energy physics

Expertise

Her expertise extends to serving as the chief expert of the Qingdao Nanolubricant Quasi Dry Manufacturing Expert Workstation.

Publications

In addition to her prolific paper output, Min Yang has authored 4 books, 2 of which were published by Science Press.

Research Interest

Grinding and precision machining, Biomedical material processing, Preparation of wearable sensors

Research Focus:

Dr. Min Yang’s research focuses on various aspects of advanced manufacturing technology, particularly in the field of grinding and precision machining. Her recent work includes investigations into the grindability evaluation of ultrasonic-assisted grinding of silicon nitride ceramic using minimum quantity lubrication based SiO2 nanofluid. Additionally, she has contributed significantly to understanding material removal mechanisms and force modeling in ultrasonic vibration-assisted micro-grinding of biological bone. Dr. Yang’s expertise extends to exploring heat transfer mechanisms in cryogenic air minimum quantity lubrication grinding of titanium alloy and developing temperature field models in surface grinding. She continues to advance knowledge in these areas through her research at Qingdao University of Technology, Qingdao, China. High Energy physics

Publications

  1. Temperature field model in surface grinding: a comparative assessment, Publication: 2023.
  2. Material Removal Mechanism and Force Modeling in Ultrasonic Vibration-Assisted Micro-Grinding Biological Bone, Publication: 2023.
  3. Convective Heat Transfer Coefficient Model Under Nanofluid Minimum Quantity Lubrication Coupled with Cryogenic Air Grinding Ti–6Al–4VPublication: 2020.
  4. Nanobiolubricant grinding: a comprehensive reviewPublication: 2024.
  5. Kinematics and improved surface roughness model in milling, Publication: 2022.
  6. Graphene-based flexible wearable sensors: mechanisms, challenges, and future directions, Publication: 2023.
  7. Grindability Evaluation of Ultrasonic Assisted Grinding of Silicon Nitride Ceramic Using Minimum Quantity Lubrication Based SiO2 NanofluidPublication: 2024.
  8. Magnetic Bearing: Structure, Model and Control strategyPublication: 2023.
.