Al-Hattab Mohamed | Physics | Member

Dr. Al-Hattab Mohamed | Physics | Member

PHD at Sultan Moulay Slimane University, Morocco

Mohamed Al-Hattab is a dedicated researcher specializing in Physics of Materials and Energy. He completed his Ph.D. at Sultan Moulay Slimane University, focusing on the properties of the semiconductor GaSe. With expertise in scanning electron microscopy, X-ray crystallography, and spectroscopy, Mohamed has contributed to various publications in prestigious journals like Solar Energy and Nanoparticle Research. He actively engages in educational activities, supervising students and presenting at international conferences. As a reviewer for prominent journals, Mohamed continues to advance research in his field, affiliated with the Research Laboratory in Physics and Sciences for Engineers at Sultan Moulay Slimane University.

Professional Profiles:

Education

Ph.D. in Physics of Materials and Energies Sultan Moulay Slimane University, Beni Mellal, Morocco (2018 – 2022) Advisor: Khalid Rahmani Dissertation: Study of the structural, electronic, optical, and elastic properties of the lamellar semiconductor (GaSe) Master in Advanced Materials Sultan Moulay Slimane University, Beni Mellal, Morocco (2015 – 2018) Bachelor’s degree in Physical Sciences, Electronics option Cadi Ayyad University, Marrakech, Morocco (2011 – 2015) Advisor: Amal Rajirae Dissertation: Study of the properties of the lamellar material GaSe used as an absorber in photovoltaic cells

Skills

Scanning Electron Microscope X-ray Crystallography UV-Visible Spectroscopy and Raman Spectroscopy Simulation (Biovia Material Studio 2017, SCAPS-1D, MATLAB, Silvako

Research Focus:

Mohamed Al-Hattab is a versatile researcher with a primary focus on materials science and renewable energy technologies. His contributions span various aspects of solar cell design and optimization, including numerical modeling, density functional theory (DFT) investigations, and experimental studies. With expertise in tandem solar cells, perovskite materials, and semiconductor physics, Mohamed’s research aligns with advancing eco-friendly and efficient photovoltaic devices. He collaborates extensively with multidisciplinary teams, emphasizing the integration of theoretical insights with practical applications. Through his work, Mohamed strives to enhance the performance and sustainability of solar energy technologies for a greener future. Physics

Publications 

  1. Experimental and numerical study of the CIGS/CdS heterojunction solar cell,  Publication date: 2023.
  2. Novel Simulation and Efficiency Enhancement of Eco-friendly Cu2FeSnS4/c-Silicon Tandem Solar Device, cited by: 4, Publication date: 2023.
  3. Ab Initio Investigation for Solar Technology on the Optical and Electronic Properties of Double Perovskites Cs2AgBiX6(X=Cl, Br, I), Publication date: 2023.
  4. Thermodynamic, optical, and morphological studies of the Cs2AgBiX6 double perovskites (X = Cl, Br, and I): Insights from DFT study, cited by: 16, Publication date: 2023.
  5. Ag2BeSnX4(S, Se,Te)-based kesterite solar cell modeling: A DFT investigation and Scaps-1 danalysis,Publication date: 2023.
  6. Numerical Simulation of CdS/GaSe Solar Cell Using SCAPs Simulation Software, Publication date: 2022.
  7. Density Functional Theory Study on the Electronic and Optical Properties of Graphene, Single-Walled Carbon Nanotube and C60, Publication date: 2022.
  8. Quantum confinement in GaN/AlInN asymmetric quantum wells for terahertz emission and field of optical fiber telecommunications, Publication date: 2024.
  9. Cu2BaSnS4/Cu2FeSnS4 combination for a good light absorption in thin-film solar cells—a numerical model, Publication date: 2024.
  10. Performance assessment of an eco-friendly tandem solar cell based on double perovskite Cs2AgBiBr6Publication date: 2024.

 

.

Nuclear Physics

 

Introduction to Nuclear Physics:

Nuclear physics is a branch of science that focuses on the study of the atomic nucleus—the core of an atom where protons and neutrons are densely packed. It delves into the fundamental forces, interactions, and properties that govern the behavior of atomic nuclei.

Nuclear Structure and Models:

Investigate the internal structure of atomic nuclei and the various models, such as the shell model and liquid-drop model, used to describe nuclear properties, including binding energies and nuclear shapes.

Nuclear Reactions and Cross Sections:

Delve into the study of nuclear reactions, which involve the interactions between atomic nuclei, and the determination of reaction cross sections, which play a vital role in astrophysics, nuclear energy production, and nuclear medicine.

Nuclear Astrophysics:

Focus on the application of nuclear physics principles to understand the processes occurring in stars, including nucleosynthesis, stellar evolution, and supernova explosions, which shape the chemical composition of the universe.

Nuclear Fusion and Fission:

Examine nuclear fusion, the process that powers the sun and holds potential for clean energy production, and nuclear fission, the basis for nuclear reactors and nuclear weapons, and their associated challenges and advancements.

Nuclear Medicine and Radiation Therapy:

Explore the applications of nuclear physics in medical imaging, such as positron emission tomography (PET) scans, and in cancer treatment through radiation therapy, highlighting the role of radioisotopes.

 

 

  Introduction to Particles and Antiparticles: Particles and antiparticles are fundamental constituents of the subatomic world, representing the matter and antimatter counterparts that populate the universe. Particles, such as electrons,
  Introduction to Quark Interactions: Quark interactions represent a fundamental aspect of the Standard Model of particle physics. Quarks are elementary particles that make up protons, neutrons, and other hadrons.
  Introduction to Spontaneous Symmetry Breaking: Spontaneous symmetry breaking is a fundamental concept in physics that plays a crucial role in explaining various phenomena across different branches of science. It
  Introduction to The Matter Particles: Matter particles are the fundamental building blocks of the material world as we know it. These particles form the basis of everything in the
  Introduction to Weak Interactions: Weak interactions, also known as the weak force or weak nuclear force, are one of the four fundamental forces of nature, alongside gravity, electromagnetism, and
  Introduction to Particle Experiments: Particle experiments are at the forefront of scientific discovery, offering unique insights into the fundamental properties of matter, the universe's structure, and the behavior of
  Introduction to Quantum Field Theory: Quantum Field Theory (QFT) is a foundational framework in theoretical physics that combines the principles of quantum mechanics and special relativity to describe the
  Introduction to Computational Methods: Computational methods represent a cornerstone of modern science and engineering, providing powerful tools for solving complex problems, simulating physical phenomena, and analyzing vast datasets. These
  Introduction to Dark Matter Studies: Dark matter is one of the most enigmatic and pervasive mysteries in the universe. Although it does not emit, absorb, or interact with light
  Introduction to Collider Phenomenology: Collider phenomenology is a field of theoretical physics that bridges the gap between theoretical predictions and experimental observations in the realm of high-energy particle physics.

Nuclear Physics

 

Introduction to Nuclear Physics:

Nuclear physics is a branch of science that focuses on the study of the atomic nucleus—the core of an atom where protons and neutrons are densely packed. It delves into the fundamental forces, interactions, and properties that govern the behavior of atomic nuclei.

Nuclear Structure and Models:

Investigate the internal structure of atomic nuclei and the various models, such as the shell model and liquid-drop model, used to describe nuclear properties, including binding energies and nuclear shapes.

Nuclear Reactions and Cross Sections:

Delve into the study of nuclear reactions, which involve the interactions between atomic nuclei, and the determination of reaction cross sections, which play a vital role in astrophysics, nuclear energy production, and nuclear medicine.

Nuclear Astrophysics:

Focus on the application of nuclear physics principles to understand the processes occurring in stars, including nucleosynthesis, stellar evolution, and supernova explosions, which shape the chemical composition of the universe.

Nuclear Fusion and Fission:

Examine nuclear fusion, the process that powers the sun and holds potential for clean energy production, and nuclear fission, the basis for nuclear reactors and nuclear weapons, and their associated challenges and advancements.

Nuclear Medicine and Radiation Therapy:

Explore the applications of nuclear physics in medical imaging, such as positron emission tomography (PET) scans, and in cancer treatment through radiation therapy, highlighting the role of radioisotopes.

 

 

  Introduction to Particles and Antiparticles: Particles and antiparticles are fundamental constituents of the subatomic world, representing the matter and antimatter counterparts that populate the universe. Particles, such as electrons,
  Introduction to Quark Interactions: Quark interactions represent a fundamental aspect of the Standard Model of particle physics. Quarks are elementary particles that make up protons, neutrons, and other hadrons.
  Introduction to Spontaneous Symmetry Breaking: Spontaneous symmetry breaking is a fundamental concept in physics that plays a crucial role in explaining various phenomena across different branches of science. It
  Introduction to The Matter Particles: Matter particles are the fundamental building blocks of the material world as we know it. These particles form the basis of everything in the
  Introduction to Weak Interactions: Weak interactions, also known as the weak force or weak nuclear force, are one of the four fundamental forces of nature, alongside gravity, electromagnetism, and
  Introduction to Particle Experiments: Particle experiments are at the forefront of scientific discovery, offering unique insights into the fundamental properties of matter, the universe's structure, and the behavior of
  Introduction to Quantum Field Theory: Quantum Field Theory (QFT) is a foundational framework in theoretical physics that combines the principles of quantum mechanics and special relativity to describe the
  Introduction to Computational Methods: Computational methods represent a cornerstone of modern science and engineering, providing powerful tools for solving complex problems, simulating physical phenomena, and analyzing vast datasets. These
Introduction to Dark Matter Studies: Dark matter is one of the most enigmatic and pervasive mysteries in the universe. Although it does not emit, absorb, or interact with light or
  Introduction to Collider Phenomenology: Collider phenomenology is a field of theoretical physics that bridges the gap between theoretical predictions and experimental observations in the realm of high-energy particle physics.