Sabrina Gouasmia | Nuclear Physics | Best Researcher Award

Dr. Sabrina Gouasmia | Nuclear Physics | Best Researcher Award

Postdoctoral researcher at Ruđer Bošković Institute | Croatia

Dr. Sabrina Gouasmia is a nuclear physicist and researcher with a strong interdisciplinary background in radiation-matter interaction, nuclear techniques, and environmental applications. With research tenures at institutions like the Ruđer Bošković Institute (Croatia) and the Nuclear Research Centre of Algiers, she has contributed significantly to both experimental nuclear physics and environmental monitoring. Her work demonstrates a powerful blend of theoretical understanding and hands-on laboratory expertise.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Gouasmia began her academic journey with a high school degree in experimental sciences, followed by a License in Fundamental Physics, a Master’s in Nuclear Sciences and Radiation-Matter Interactions, and a Doctorate in Nuclear Physics from the University of Science and Technology Houari Boumediene, Algeria. Her Ph.D. research focused on hypervelocity cluster ion interactions with solid surfaces, modeling crater formation, sputtering, and shock wave dynamics, showcasing early mastery of both simulation and experimental methodologies.

🧑‍🔧 Professional Endeavors

Dr. Sabrina Gouasmia has held diverse professional roles including Postdoctoral Researcher at Ruđer Bošković Institute, Physicist at the Nuclear Research Centre of Algiers, and Physics Lecturer at the University of Science and Technology Houari Boumediene. She also taught at the secondary school level. Her expertise spans particle accelerator laboratories, gamma spectrometry, and air pollution monitoring, demonstrating her versatility and interdisciplinary competence in nuclear physics and environmental science.

🔬 Contributions and Research Focus

Dr. Sabrina Gouasmia’s work spans key nuclear analytical techniques such as RBS, ERDA, PIXE, and NRA, as well as gamma spectrometry and radioisotope analysis. She has contributed to air pollution monitoring using ED-XRF, RSS reflectometry, and Positive Matrix Factorization. Her expertise with accelerator-based methods includes work on Tandem 6 MV, Tandetron 1 MV, and 3.75 MV VdG. She also mentors Ph.D. students, assisting in MCNP simulation, sample preparation, and detector calibration, showcasing her leadership and collaborative skills.

🌍 Impact and Influence

Dr. Gouasmia’s active involvement in IAEA technical cooperation projects such as TC ALG 0018, RAF/5075, and RAF/7016 reflects her strong regional and international influence. Her work has supported the development of particle accelerator networks, air quality assessment systems, and soil erosion evaluation using fallout radionuclides. These efforts contribute significantly to global environmental monitoring and nuclear safety strategies, positioning her as a key figure in advancing sustainable scientific infrastructure in both national and international contexts.

📚 Academic Cites

While specific publication metrics are not listed, her involvement in high-level institutional research, IAEA collaboration, and advanced experimental work implies significant academic value. Increasing her presence in peer-reviewed journals will further elevate her impact.

🧪 Research Skills

Dr. Gouasmia demonstrates expert-level proficiency in a wide array of nuclear measurement tools including SIMNRA, SRIM, GUPIX, and Genie 2000. Her expertise extends to gamma spectrometry, GeHP detector calibration, and air particulate analysis using source apportionment techniques. She is highly skilled in accelerator operations, data interpretation, and MCNP simulations, complemented by her use of advanced statistical modeling. These skills collectively highlight her capacity for conducting high-precision, multidisciplinary research in nuclear and environmental physics.

👩‍🏫 Teaching Experience

She has taught physics at both university and secondary levels, and mentored graduate researchers, enhancing her profile as a research-educator. Her guidance in instrumentation techniques and data analysis speaks to her role in capacity-building.

🏅 Awards and Honors

Dr. Gouasmia has been awarded IAEA fellowships and participated in regional training programs in Austria and Egypt. These reflect international recognition of her skills and commitment to global nuclear science development.

🌟 Legacy and Future Contributions

With her ongoing postdoctoral work, Dr. Gouasmia is well-positioned to further contribute to advanced nuclear diagnostics, environmental safety, and scientific collaboration across borders. She stands out as a mentor, researcher, and contributor to sustainable development goals related to radiation safety and environmental stewardship.

Publications Top Notes

Trace element and radiological characterisation of ash and soil at a legacy site in the former Raša coal-mining area

  • Authors: Tomislav Bituh, Josip Peco, Iva Bozicevic Mihalic, Sabrina Gouasmia, Marija Grlić, Branko Petrinec
    Journal: Archives of Industrial Hygiene and Toxicology
    Year: 2024

Toward Developing Techniques─Agnostic Machine Learning Classification Models for Forensically Relevant Glass Fragments

  • Authors: Omer Kaspi, Osnat Israelsohn-Azulay, Zidon Yigal, Hila Rosengarten, Matea Krmpotic, Sabrina Gouasmia, Iva Bogdanovic Radovic, Pasi Jalkanen, Anna Liski, Kenichiro Mizohata, et al.
    Journal: Journal of Chemical Information and Modeling
    Year: 2023

Influence of surface morphology on erosion of plasma-facing components in H-mode plasmas of ASDEX Upgrade

  • Authors: A. Lahtinen, A. Hakola, J. Likonen, M. Balden, K. Krieger, S. Gouasmia, I. Bogdanovic Radovic, G. Provatas, M. Kelemen, S. Markelj, et al.
    Journal: Nuclear Materials and Energy
    Year: 2022

Inter-laboratory workflow for forensic applications: Classification of car glass fragments

  • Authors: Omer Kaspi, Osnat Israelsohn-Azulay, Yigal Zidon, Hila Rosengarten, Matea Krmpotić, Sabrina Gouasmia, Iva Bogdanović Radović, Pasi Jalkanen, Anna Liski, Kenichiro Mizohata, et al.
    Journal: Forensic Science International
    Year: 2022

Gross and net erosion balance of plasma-facing materials in full-W tokamaks

  • Authors: Antti Hakola, J. Likonen, A. Lahtinen, Tomi Vuoriheimo, Mathias Groth, Henri Kumpulainen, Martin Balden, Karl Krieger, Matej Mayer, Thomas Schwarz-Selinger, et al.
    Journal: Nuclear Fusion
    Year: 2021

 

Al-Hattab Mohamed | Physics | Member

Dr. Al-Hattab Mohamed | Physics | Member

PHD at Sultan Moulay Slimane University, Morocco

Mohamed Al-Hattab is a dedicated researcher specializing in Physics of Materials and Energy. He completed his Ph.D. at Sultan Moulay Slimane University, focusing on the properties of the semiconductor GaSe. With expertise in scanning electron microscopy, X-ray crystallography, and spectroscopy, Mohamed has contributed to various publications in prestigious journals like Solar Energy and Nanoparticle Research. He actively engages in educational activities, supervising students and presenting at international conferences. As a reviewer for prominent journals, Mohamed continues to advance research in his field, affiliated with the Research Laboratory in Physics and Sciences for Engineers at Sultan Moulay Slimane University.

Professional Profiles:

Education

Ph.D. in Physics of Materials and Energies Sultan Moulay Slimane University, Beni Mellal, Morocco (2018 – 2022) Advisor: Khalid Rahmani Dissertation: Study of the structural, electronic, optical, and elastic properties of the lamellar semiconductor (GaSe) Master in Advanced Materials Sultan Moulay Slimane University, Beni Mellal, Morocco (2015 – 2018) Bachelor’s degree in Physical Sciences, Electronics option Cadi Ayyad University, Marrakech, Morocco (2011 – 2015) Advisor: Amal Rajirae Dissertation: Study of the properties of the lamellar material GaSe used as an absorber in photovoltaic cells

Skills

Scanning Electron Microscope X-ray Crystallography UV-Visible Spectroscopy and Raman Spectroscopy Simulation (Biovia Material Studio 2017, SCAPS-1D, MATLAB, Silvako

Research Focus:

Mohamed Al-Hattab is a versatile researcher with a primary focus on materials science and renewable energy technologies. His contributions span various aspects of solar cell design and optimization, including numerical modeling, density functional theory (DFT) investigations, and experimental studies. With expertise in tandem solar cells, perovskite materials, and semiconductor physics, Mohamed’s research aligns with advancing eco-friendly and efficient photovoltaic devices. He collaborates extensively with multidisciplinary teams, emphasizing the integration of theoretical insights with practical applications. Through his work, Mohamed strives to enhance the performance and sustainability of solar energy technologies for a greener future. Physics

Publications 

  1. Experimental and numerical study of the CIGS/CdS heterojunction solar cell,  Publication date: 2023.
  2. Novel Simulation and Efficiency Enhancement of Eco-friendly Cu2FeSnS4/c-Silicon Tandem Solar Device, cited by: 4, Publication date: 2023.
  3. Ab Initio Investigation for Solar Technology on the Optical and Electronic Properties of Double Perovskites Cs2AgBiX6(X=Cl, Br, I), Publication date: 2023.
  4. Thermodynamic, optical, and morphological studies of the Cs2AgBiX6 double perovskites (X = Cl, Br, and I): Insights from DFT study, cited by: 16, Publication date: 2023.
  5. Ag2BeSnX4(S, Se,Te)-based kesterite solar cell modeling: A DFT investigation and Scaps-1 danalysis,Publication date: 2023.
  6. Numerical Simulation of CdS/GaSe Solar Cell Using SCAPs Simulation Software, Publication date: 2022.
  7. Density Functional Theory Study on the Electronic and Optical Properties of Graphene, Single-Walled Carbon Nanotube and C60, Publication date: 2022.
  8. Quantum confinement in GaN/AlInN asymmetric quantum wells for terahertz emission and field of optical fiber telecommunications, Publication date: 2024.
  9. Cu2BaSnS4/Cu2FeSnS4 combination for a good light absorption in thin-film solar cells—a numerical model, Publication date: 2024.
  10. Performance assessment of an eco-friendly tandem solar cell based on double perovskite Cs2AgBiBr6Publication date: 2024.

 

.