Faisal faiz | Experimental methods | Physics Industry Leadership Award

Dr. Faisal faiz | Experimental methods | Physics Industry Leadership Award

Assistant Professor at Shenzhen university | China

Dr. Faisal Faiz is a dedicated nanotechnologist and Research Fellow at the College of Electronics and Information Engineering, Shenzhen University, Guangdong, China. With a robust academic background, he holds a Ph.D. in Analytical Chemistry from Nanjing University, China. His thesis focused on the synthesis of nanomagnetic materials for speciation analysis of heavy toxic metals in environmental water. His work, especially in functionalized nanomaterials for environmental applications, has positioned him as a key contributor to the nanotechnology and environmental science fields.

šŸ‘Øā€šŸŽ“Profile

Google scholar

ScopusĀ 

ORCID

Early Academic Pursuits šŸ“š

Dr. Faiz’s academic journey began with a Bachelor’s degree in Chemistry, Physics, and Mathematics from Bahauddin Zakariya University, Pakistan, followed by a Master’s in Applied Chemistry from the University of Engineering and Technology, Lahore. His keen interest in research led him to pursue an M.Phil. in Applied Chemistry at Bahauddin Zakariya University. These foundational studies laid the groundwork for his doctoral work at Nanjing University, where he explored innovative approaches in nanomaterial synthesis and heavy metal pollutant detection.

Professional Endeavors šŸ§‘ā€šŸ”¬

Dr. Faiz has had a diverse career spanning several research institutions and teaching roles. His professional journey includes a Postdoctoral Research Scholar position at Shenzhen University, where he continues his pioneering research on nanomaterials and environmental sustainability. Prior to this, he worked as a Research Assistant at the Pakistan Institute of Nuclear Science & Technology and a Senior Lecturer at Allama Iqbal Open University. These roles have allowed Dr. Faiz to hone his research skills while contributing to environmental monitoring, sustainable technology, and energy applications.

Contributions and Research Focus šŸ”¬

Dr. Faiz’s primary research focus is on the development of functionalized nanomaterials to address environmental challenges. His research spans three core areas:

  • Environmental Applications of Nanomaterials šŸŒ: He explores metal oxides and magnetic nanoparticles to create efficient sensors and advanced systems for detecting toxic gases and pollutants in air and water. His work is focused on real-time environmental monitoring, essential for ecological sustainability and public health.

  • Advanced Sensing Technologies ⚔: Dr. Faiz is advancing the development of MEMS-based gas sensors using inkjet printing technology. His efforts aim to improve the sensitivity, speed, and affordability of sensors for detecting hazardous gases at trace levels.

  • Supercapacitors for Energy and Environmental Applications šŸ”‹: Dr. Faiz’s work on supercapacitors involves optimizing nanomaterials like metal oxides for energy storage systems that can be utilized in renewable energy storage and energy-efficient industrial devices.

Impact and Influence šŸŒ

Dr. Faiz’s work has made significant contributions to environmental science, nanotechnology, and sustainable energy systems. His research into nanomaterials has led to the development of new solutions for toxic pollutant detection, environmental monitoring, and energy storage technologies. With patents and research collaborations on a national level, he is helping to drive forward the global agenda on environmental sustainability.

Academic Cites šŸ“‘

Throughout his academic career, Dr. Faiz has been widely cited in scientific literature for his work on magnetic nanoparticles, environmental remediation, and nanomaterial synthesis. His contributions to toxic metal removal from water and the development of advanced sensors have made him a respected figure in the nanotechnology community. His publications continue to inspire new research in the fields of materials science and environmental engineering.

Research Skills šŸ› ļø

Dr. Faiz possesses a diverse skill set in various experimental techniques, including:

  • Electron Microscopy (SEM, TEM)
  • X-ray Photoelectron Spectroscopy (XPS)
  • X-ray Diffraction (XRD)
  • Electrochemical Workstation Techniques
  • Atomic Absorption Spectrometry (AAS) and High-Performance Liquid Chromatography (HPLC)

These research skills enable him to conduct cutting-edge studies in nanomaterials and environmental monitoring. His ability to integrate various analytical techniques enhances the depth of his research and helps in developing innovative solutions for environmental challenges.

Teaching Experience šŸ«

Dr. Faiz has an extensive teaching background, including roles as a Senior Lecturer and Science Teacher. He has taught a range of chemistry courses and has been involved in academic administration, including being a coordinator for international students and a class representative. His teaching approach blends scientific rigor with practical applications, encouraging students to engage with cutting-edge technologies and environmental solutions.

Awards and Honors šŸ…

Dr. Faiz has been recognized with several awards, including:

  • Chinese Government Scholarship for his Ph.D. studies at Nanjing University.
  • Best Postgraduate Researcher award at the Institute of Chemical Sciences, Bahauddin Zakariya University.
  • Distinguished Researcher at the Pakistan Institute of Nuclear Science & Technology.

These accolades reflect his excellence in research, contribution to scientific knowledge, and commitment to environmental sustainability.

Legacy and Future Contributions 🌱

Dr. Faiz’s work promises to leave a lasting legacy in the fields of nanotechnology and environmental science. As he continues to develop functionalized nanomaterials, his research has the potential to transform industries by offering sustainable solutions for pollution detection and energy storage. Looking forward, he aims to push the boundaries of green nanomaterials, further advancing technologies for clean energy, pollution remediation, and environmental protection.

Publications Top Notes

Innovative adsorbent for sulphur dioxide: synergy of activated carbon, polyionic liquids, and chitosan

  • Authors: A. Wahab, Abdul; A. Farooq, Amjad; F. Faiz, Faisal; J. Wu, Jianghua; Y. Faiz, Yasir
    Journal: Adsorption
    Year: 2025

Tailoring MnO2 nanowire defects with K-doping for enhanced electrochemical energy storage in aqueous supercapacitors

  • Authors: J. Wu, Jianghua; F. Faiz, Faisal; M. Ahmad, Mashkoor; X. Pan, Xiaofang; Y. Faiz, Yasir
    Journal: Applied Surface Science
    Year: 2025

Removal of gaseous methyl iodide using hexamethylenetetramine and triethylenediamine impregnated activated carbon: A comparative study

  • Authors: T. Yaqoob, M. Ahmad, A. Farooq, F. Ali, Y. Faiz, A. Shah, F. Faiz, M.A. Irshad
    Journal: Diamond and Related Materials
    Year: 2023

Tuning electrocatalytic activity of Co3O4 nanosheets using CdS nanoparticles for highly sensitive non-enzymatic cholesterol biosensor

  • Authors: H. Waleed, H.U. Rasheed, A. Nisar, A. Zafar, Y. Liu, S. Karim, Y. Yu, H. Sun
    Journal: Materials Science in Semiconductor Processing
    Year: 2024

Mesoporous Co3O4@CdS nanorods as anode for high-performance lithium-ion batteries with improved lithium storage capacity and cycle life

  • Authors: H. Waleed, H.U. Rasheed, F. Faiz, A. Zafar, S. Javed, Y. Liu, S. Karim, H. Sun
    Journal: RSC Advances
    Year: 2024

 

 

Srither SR | Experimental methods | Best Researcher Award

Dr. Srither SR | Experimental methods | Best Researcher Award

Associate Professor at Koneru Lakshmaiah Education Foundation (KLEF) | India

Dr. SR. Srither is an accomplished Research Associate with a dynamic career spanning both India and abroad. With extensive expertise in Nanotechnology, his work focuses on energy harvesting, material synthesis, and nanocomposite development. He has contributed significantly to the advancement of piezoelectric and triboelectric technologies, with a primary focus on creating self-powered systems for flexible applications. His journey includes notable academic and professional roles across institutions such as the Southern University of Science and Technology (China) and Centre for Nano and Soft Matter Sciences (India).

šŸ‘Øā€šŸŽ“Profile

Google scholarĀ 

Scopus

ORCID

Early Academic Pursuits šŸ“š

Dr. Srither’s academic journey began with his B.E. in Electronics and Communication from St. Joseph’s College of Engineering, Chennai, followed by an M.Tech in Nanoscience and Technology from K.S. Rangasamy College of Technology, Coimbatore, where he graduated First Class with Distinction. His thirst for knowledge led him to pursue a Ph.D. in Nanotechnology at Anna University, Chennai. His early academic interests focused on the synthesis and characterization of nanomaterials, laying the foundation for his cutting-edge research in energy storage and conversion technologies.

Professional Endeavors šŸ’¼

Dr. Srither’s career trajectory showcases his commitment to research and teaching. He currently serves as a Visiting Professor at KL Deemed to be University, where he imparts his expertise to students in the Department of Electronics and Communication Engineering. His professional experiences extend across multiple prestigious research roles, notably as a Post-doctoral Fellow at the Quantum Information & Intelligent Energy Harvesting Lab, Southern University of Science and Technology (SUSTech), Shenzhen, China. His work continues to influence nanotechnology, energy harvesting, and energy storage devices.

Contributions and Research Focus šŸ”¬

Dr. Srither’s research focuses on nanostructures, nanocomposites, and their applications in self-powered systems. Key contributions include the fabrication of piezo/triboelectric hybrid nanogenerators that are low-cost and flexible, designed for a wide range of IoT-enabled devices and health monitoring applications. His research also includes groundbreaking work on transparent polymers for triboelectric energy harvesting and the exploration of manganese dioxide nanoparticles for energy conversion applications.

Impact and Influence šŸŒ

Dr. Srither has made a lasting impact on the nanotechnology field through his innovative research and interdisciplinary projects. His work on energy harvesting has revolutionized the development of wearable devices and self-powered systems, enabling sustainable technology in fields like IoT and healthcare. His research has been recognized by notable platforms, including the Ministry of Science and Technology, Govt. of India, and has been showcased through multiple publications and patents.

Academic Cites šŸ“‘

Dr. Srither’s work has been cited extensively in high-impact journals, with his research on triboelectric nanogenerators and nanocomposite materials contributing significantly to the broader field of renewable energy and flexible electronics. He has also been a frequent presenter at international conferences and symposia, where his findings continue to inspire and influence researchers worldwide.

Research Skills 🧪

Dr. Srither possesses a diverse range of experimental skills that include spin coating, spray coating, electrospinning, and spray pyrolysis, along with advanced characterization techniques like X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-Vis spectroscopy. His expertise in electrochemical testing and device evaluation has been pivotal in the development of energy harvesting systems and energy storage devices.

Teaching Experience šŸŽ

Dr. Srither’s role as a Visiting Professor at KL Deemed to be University allows him to impart his knowledge to undergraduate and postgraduate students in Nanotechnology. He also has significant experience in practical teaching, having assisted professors in lab work, project development, and demonstrations in nanotechnology. His involvement in designing and executing exhibits has further enriched his teaching journey, preparing students for real-world applications of nanoscience and technology.

Awards and Honors šŸ†

Dr. Srither’s dedication to excellence has been recognized through numerous accolades, including the Best Paper Award at the International Conference on Wireless Communication and Emerging Technologies (RAWCET 2022) for his work on a wearable single-electrode mode triboelectric nanogenerator. His innovations have also been featured on the DST website, with recognition from the Ministry of Science and Technology, Govt. of India.

Legacy and Future Contributions šŸš€

Dr. Srither’s work sets the foundation for significant advancements in sustainable energy technologies and smart devices. His legacy lies in his ability to merge nanoscience with practical, real-world applications, particularly in energy harvesting and self-powered systems. Moving forward, his ongoing projects, such as motion sensing in sewage tunnels and structural health monitoring applications, promise to continue shaping the future of energy efficiency and smart infrastructure.

Publications Top Notes

High-Sensitivity Optical Fiber-Based SPR Sensor for Early Cancer Cell Detection Using Cerium Oxide and Tungsten Disulfide

  • Authors: N. Hma Salah, Nasih V. Yesudasu, Vasimalla B. Kaur, Baljinder S.R. Srither, S. R. Kumar, Santosh
    Journal: Plasmonics
    Year: 2025

SMF-based SPR sensors utilizing thallium bromide immobilization for detection of various bacterial cells

  • Authors: V. Yesudasu, Vasimalla N. Hma Salah, Nasih S. Chella, Santhosh S.R. Srither, S. R. Kumar, Santosh
    Journal: Microchemical Journal
    Year: 2025

Electrical and dielectric properties of PVA-doped NiGdxFe2-xO4 nanoferrite particles

  • Authors: N Lenin, NJ Raj, RR Kanna, P Karthikeyan, M Balasubramanian, …
    Journal: Materials Science and Engineering: B
    Year: 2024

Simple Non-Invasive Coronary Artery Disease Detection Using Machine Learning

  • Authors: S Kalpana, SR Srither, NR Dhineshbabu, G Nikitha
    Journal: 2024 4th International Conference on Innovative Practices in Technology and …
    Year: 2024

Recent advances in wearable textile-based triboelectric nanogenerators

  • Authors: S Neelakandan, SR Srither, NR Dhineshbabu, S Maloji, O Dahlsten, …
    Journal: Nanomaterials
    Year: 2024

Mohaddeseh Shahabi Nejad | Nanomaterial | Member

Dr. Mohaddeseh Shahabi Nejad | Nanomaterial | Member

PHD at Shahid Bahonar University of Kerman, Iran

Mohaddeseh Shahabi Nejad, an accomplished researcher and educator, holds a Ph.D. in Organic Chemistry from Shahid Bahonar University of Kerman. With expertise in material preparation and characterization, she has led impactful projects on nanocomposites for environmental remediation. As Head of the Laboratory of Classic Processing Processes at IBKO Company, she conducts chemical analysis and oversees research initiatives. Additionally, Mohaddeseh serves as a dedicated teacher at Shahid Bahonar University and Applied Sciences University of Kerman, imparting knowledge in chemistry and laboratory procedures. Her contributions have earned her numerous accolades, including recognition as a top researcher and Ph.D. student in her field.

Professional Profiles:

Education

Ph.D. in Organic Chemistry Shahid Bahonar University of Kerman [2013 – 2018] Final grade: 18.25/20 Thesis: Synthesis of nanoparticles and ionic liquids immobilized on magnetic supports and their application in organic reactions M.Sc. in Organic Chemistry Isfahan University of Technology [2008 – 2012] Thesis: Synthesis and characterization of modified bentonite & silica supported Au nanoparticles and use them in the solvent-free oxidation of cyclohexene with molecular oxygen B.Sc. in Chemistry Shahid Bahonar University of Kerman [2003 – 2008] HONOURS AND AWARDS Top Researcher with a Skill-Building approach in Kerman Province [2022] The Selected Research for the cover image of Applied Organometallic Chemistry (ISI, IF: 4.105, Q1) [2019] Top Ph.D. Student of Chemistry Department (Organic Chemistry Group) [2018]

Work Experiences

Head of the Laboratory of Classic Processing Processes Research and Processing Center of IBKO Company [2021 – Current] City: Kerman Country: Iran Conduct chemical analysis of minerals and geochemistry samples

HONOURS AND AWARDS

Top Researcher with a Skill-Building approach in Kerman Province [2022] The Selected Research for the cover image of Applied Organometallic Chemistry (ISI, IF: 4.105, Q1) [2019] Top Ph.D. Student of Chemistry Department (Organic Chemistry Group) [2018]

PROFESSIONAL SKILLS

Graphene & Graphene Oxide Carbon Quantum Dots Polymers and Composites Covalent Organic Framework Graphitic Carbon Nitride Biochar Metal & Metal Oxide Nanoparticles Nanocatalyst & Photocatalyst

Research Interests

Mining Analysis, Water Treatment, Carbon-Based Materials, Polymers & Composites, Metal & Metal Oxide Nanoparticles, Catalysis and Photocatalysis.

Research Focus:

Mohaddeseh Shahabi Nejad’s research primarily focuses on the synthesis and application of advanced nanomaterials for environmental remediation and catalysis. Her work encompasses various areas, including the fabrication of nanocomposites for adsorption of antibiotics and heavy metal ions from aqueous solutions, as well as the green synthesis of nanoparticles for organic dye reduction. Additionally, she explores the design and characterization of magnetic nanocatalysts for C-N and C-C cross-coupling reactions, highlighting her expertise in materials science and catalytic chemistry. Through her innovative research, Mohaddeseh contributes significantly to the development of sustainable solutions for environmental challenges and catalytic processes.

Publications

  1. Effect of modified nanocellulose on improving mechanical properties of flowable dental composite resin, Publication: 2024.
  2. Biochar/g-C3N4Ā nano hetero-structure decorated with pt nanoparticles for diazinon photodegradation andĀ E. coli photodeactivation under visible light,Ā Publication: 2023.
  3. Cellulose-wrapped graphene oxide as efficient adsorbents for pharmaceutical contaminants, Publication: 2023.
  4. Fabrication of covalently linked ruthenium complex onto carbon nitride nanotubes for the photocatalytic degradation of tetracycline antibiotic,Ā Publication: 2022.
  5. Architecture of chitosan chains with sulfur‐doped carbon dots along with decorating CeO2Ā nanoparticles for the photocatalytic application, Publication: 2022.
  6. Enhanced visible-light photocatalytic activity of ZnS/S-graphene quantum dots reinforced with Ag2S nanoparticles, Publication: 2022.
  7. Oriented growth of copper & nickel-impregnated Ī“-MnO2 nanofilaments anchored onto sulfur-doped biochar template as hybrid adsorbents for removing phenolic compounds by, Publication: 2022.
  8. Assembly of CuO nanorods onto poly (glycidylmethacrylate)@ polyaniline core–shell microspheres: Photocatalytic degradation of paracetamol, Publication: 2021.
  9. Green synthesis of Ag nanoparticles on the modified graphene oxide using Capparis spinosa fruit extract for catalytic reduction of organic dyes, Publication: 2021.
  10. Adsorption of tetracycline antibiotic from aqueous solutions onto vitamin B6-upgraded biochar derived from date palm leaves, Publication: 2020.
.

Muhammad Khuram Shahzad | Nano Materials | Member

Assist Prof Dr. Muhammad Khuram Shahzad | Nano Materials | Member

Assistant Professor at Khwaja Fareed University of Engineering and Information Technology, Pakistan

Dr. Muhammad Khuram Shahzad is an Assistant Professor at Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Pakistan. With a Ph.D. in Physics from Harbin Institute of Technology, China, he specializes in up-conversion nano-materials for biological applications, hyperthermia, and cancer treatments. He has 28 international publications with an impressive impact factor of 250.31. Dr. Shahzad has completed projects funded by Pakistan Science Foundation and Chinese Scholarship Council, focusing on efficient synthesis and preparation of up-conversion nanoparticles. Recognized for his research excellence, he has received awards from the Higher Education Commission of Pakistan and the Prime Minister’s office, showcasing his dedication to advancing scientific knowledge.

Professional Profiles:

Education

Ph.D. Physics, 2019 – Harbin Institute of Technology, China Master of Philosophy (M.Phil), 2015 – Department of Physics, University of Agriculture, Faisalabad, Pakistan Master of Science (M.Sc.) Physics, 2011 – Government College University Faisalabad, Pakistan Bachelor of Science (B.Sc.) Physics, 2006 – University of the Punjab, Lahore, Pakistan

Work Experience

Lecturer in Physics: Masomeen College for Advanced Studies, Chiniot (2010-2015) Post Doc Position: Henan University, Kaifeng China (4, December 2019 – 30, September 2020) Assistant Professor: KFUEIT (30, September 2020 – Present)

Research Experience

Six (6) years research experience in the field of up-conversion (UC) nano-materials for biological applications, hyperthermia and cancer treatments, sensors, thin films, nanotechnology, DFT, and Optogenetics Total publications: 28 International Publications: 28 International Impact factor: 250.31 Submitted articles: 3 International journal’s reviewer: Physical and Engineering Sciences in Medicine, Biomedical optics express, Journal of biological chemistry, Pakistan journal of biological science

Awards / Achievements

Awarded best researcher by Higher Education Commission of Pakistan on 04, November-2022 Won laptop and certificate by Prime Minister of Pakistan for best young researcher in Pakistan in 2015. CSC scholarship for doctoral degree admission in China from 2016 to 2019. Sparkle fellowship on 20 December 2020 (Ireland).

Research Focus:

Muhammad Khuram Shahzad’s research primarily focuses on nanomaterials and their applications in biomedical engineering, particularly in the fields of hyperthermia therapy and optical sensing. His work includes the synthesis and characterization of nanoparticles for photo-hyperthermia therapy, as well as the development of optical temperature sensing probes using nanostructured materials. Additionally, Shahzad investigates the use of nanocomposites for contaminant removal and solar-to-fuel conversion. His contributions span various disciplines, including nanotechnology, photonics, and materials science, aiming to advance knowledge and technology for biomedical and environmental applications.

Publications

  1. Fermented Corn Stalk for Biosorption of Copper(II) from Aqueous Solution, cited by: 2, Publication: 2018.
  2. A DFT study of structural, electronic, optical, thermal and mechanical properties of cubic perovskite KGeX3 (X = Cl, Br) compound for solar cell applications, cited by: 1, Publication: 2024.
  3. Structural, electronic, optical, and mechanical properties of cubic perovskite LaMnX3 (X = Cl, Br, I) compound for optoelectronic applications: a DFT study, Publication: 2024.
  4. Structural, Electronic, Mechanical, and Optical properties of the lead-free halide perovskites XGeCl3(X = Cs, K, and Rb) for the photovoltaic and optoelectronic applications, Publication: 2023.
  5. Analysis of gold nanospheres, nano ellipsoids, nanorods, and effect of core–shell structures for hyperthermia treatment, Publication: 2022.
  6. Influence of VO2 based structures and smart coatings on weather resistance for boosting the thermochromic properties of smart window applications,Ā Publication: 2022.
  7. Zirconium-based cubic-perovskite materials for photocatalytic solar cell applications: a DFT study, Publication: 2022.
  8. Investigation on optical temperature sensing behaviour via Ag island-enhanced luminescence doped β-NaGdF4:Yb3+/Tm3+ films/microfibers†,Ā Publication: 2021.
  9. Facile preparation of upconversion microfibers for efficient luminescence and distributed temperature measurement†, Publication: 2019.
  10. Dispersing upconversion nanocrystals in PMMA microfiber: a novel methodology for temperature sensing, Publication: 2018.
.

Muhammad Junaid | Nanotechnology | Member

Prof. Muhammad Junaid | Nanotechnology | Member

PHD at The Islamia University Bahawalpur, Pakistan

Muhammad Junaid is a dedicated physicist and academician with a passion for research in nanotechnology and renewable energy. He holds a Ph.D. in Physics (ongoing) from The Islamia University Bahawalpur, Pakistan, and an M.Phil. in Nano-Technology from UMT, Lahore. With expertise in synthesizing photo catalysts and nanomaterials, Junaid has contributed significantly to the field. Currently serving as a Lecturer at The Superior College/University Multan Campus, he focuses on enhancing photocatalytic activity for hydrogen generation and green energy production. His research interests and commitment to academia mark him as a promising figure in the scientific community.

Professional Profiles:

Education

Ph.D. in Physics (Continuing) Institute of Physics, The Islamia University Bahawalpur, Pakistan 2020-2023 M. Phil in Nano-Technology Department of Physics, UMT, Lahore, Pakistan 2017-2019 M. Sc. in Physics Department of Physics, Baha Ud din Zakariya University, Multan, Pakistan 2014-2017 B.Sc. in Physics, Math A, Math B, English Govt. College Civil line, Multan 2011-2013 F. Sc. HSSC (Pre-Engineering) B. I. S. E. Rawal Pindi 2008-2010 Matriculation SSC (Science) B. I. S. E. Mardan KPK 2006-2008

Professional Experiences

Current Position: Lecturer of Physics and Physical Chemistry, Department of Physics, The Superior College/University Multan Campus, Pakistan. Employment Record: PhD Candidate (Continuing) Institute of Physics, The Islamia University Of Bahawalpur Pakistan April 2021 – 2023 M.Phil. Research School of Science, Department of Physics, UMT Lahore Pakistan Feb 2019 – April 2020 Lecturer The ILM Group of Colleges, Multan May 2013 – Aug 2015 Lecturer Pak Turk Int School and Colleges, Multan Feb 2017 – April 2017 Lecturer The Superior Group of Colleges Multan Campus Aug 2018 – Till date

Research Interests

Development of Photo Catalysts for the Photo Reduction of CO2, H2, Water Splitting, and Photo Degradation of Organic Pollutants. Synthesis of Photo Catalysts, Magnetic/Electric Nanomaterials, and Metal Oxides based Nano Particles for Sensors. Synthesis of Nanomaterials/Doped Materials by Various Techniques. Synthesis of Graphene Single/Multiple Layers/Quantum Dots by Hummer Method.

Research Focus:

Muhammad Junaid’s research primarily focuses on the structural, spectral, dielectric, and magnetic properties of various ferrite materials. His investigations span across a wide range of doped and substituted ferrites, including lithium, cobalt, nickel, manganese, and copper-based systems. Through techniques such as micro-emulsion synthesis and sol-gel methods, Junaid explores the impact of doping elements like terbium, indium, gadolinium, dysprosium, and neodymium on the physical characteristics of ferrite materials. This extensive body of work contributes significantly to understanding the intricate relationships between structural modifications and the resulting electromagnetic properties of ferrites, advancing the field of magnetic materials science.

PublicationsĀ 

  1. Structural, spectral, dielectric and magnetic properties of indium substituted copper spinel ferrites synthesized via sol gel technique, cited by: 34, Publication date: 2020.
  2. Structural, spectral, magnetic and dielectric properties of Bi substituted Li-Co spinel ferrites, cited by: 32, Publication date: 2020.
  3. Impact of Bi–Cr substitution on the structural, spectral, dielectric and magnetic properties of Y-type hexaferrites, cited by: 16, Publication date: 2020.
  4. The influence of Zr and Ni co-substitution on structural, dielectric and magnetic traits of lithium spinel ferrites, cited by: 13, Publication date: 2022.
  5. Investigation into the structural and magnetic features of nickel doped U-type hexaferrites prepared through sol–gel method, cited by: 13, Publication date: 2022.
  6. Structural spectral, dielectric, and magnetic properties of Mg substituted Ba3CoFe24O41 Z-type hexaferrites, cited by: 12, Publication date: 2022.
  7. Structural, spectral, dielectric, and magnetic properties of indium substituted Cu0.5Zn0.5Fe2āˆ’xO4Ā magnetic oxides, cited by: 10, Publication date: 2022.
  8. Effect of Nd3+ ions on structural, spectral, magnetic, and dielectric properties of Co–Zn soft ferrites synthesized via sol-gel technique, cited by: 8, Publication date: 2022.
  9. Evaluations of structural, thermal, spectral, and magnetic properties of Li0. 5Fe2. 5O4 multi magnetic oxide fabricated via sol-gel auto-ignition technique, cited by: 8, Publication date: 2022.
  10. Insight of terbium substitution on the structural, spectroscopic, and dielectric characteristics of the Ba–Mg–Fe–O system, cited by: 5, Publication date: 2023.

 

.

Issam Derkaoui | Materials Science | Member

Dr. Issam Derkaoui | Materials Science | Member

PHD at FSDM, Fez, Morocco

Issam Derkaoui, a PhD holder in Materials Science and Industrial Processes, specializes in the experimental development of nanocomposites with graphene derivatives and metal oxides. His research, spanning from synthesis to characterization, aims to advance nanotechnologies. Additionally, he employs first-principles calculations like DFT to model metal oxides and perovskites. With extensive post-doctoral and teaching experience, Issam has honed skills in materials characterization and synthesis methods. He has contributed to numerous publications and presented at international conferences. As a reviewer and organizer, Issam actively engages in the academic community, fostering advancements in materials science and computational physics.

Professional Profiles:

EDUCATION

Temporary Post-Doctoral Researcher Solid State Physics Laboratory, FSDM, Fez, Morocco July 2018 – 2022 Experimental: Synthesis and characterization of nanomaterials and nanocomposites. Theoretical: Validation of experimental results using DFT calculations. Permanent Teacher of Physics Preparatory classes for engineering schools, Ibn Ghazi, Meknes, Morocco 2015 – 2019 Training in Materials Characterization Techniques National Institute of Materials Physics (NIMP), Bucharest, Romania X-ray diffractometer, Raman Spectroscopy, Spectroscopic Ellipsometry Training in Material Synthesis Methods National Institute of Materials Physics (NIMP), Bucharest, Romania Magnetron Sputtering Method, Hydrothermal Method, Pyrolysis Spray Technique Vacancy for the Training: Methodology of Writing a Final Project Laboratory of Theoretical and Applied Physics, FSDM, Fez, Morocco

RESEARCH INTERNSHIPS

Associate Professor: University of Dschang, Cameroon (2019 – Present) Lecturer and Visiting Lecturer: Various institutions in Cameroon (2012 – 2019) Visiting Lecturer: National Polytechnic Bambui, Cameroon (2008 – 2009) Visiting Lecturer: Intitut PrivĆ© Polyvalent la Reforme, Cameroon (2007 – 2008)

SOFTWARE SKILLS

CASTEP Materials Studio Movavi OriginLab PVSyst PVGIS PowerPoint Quantum Espresso Python

RESEARCH AREA EXPERIENCE

Issam Derkaoui’s research interests lie in both experimental and theoretical aspects of materials science, with a focus on: Hydrothermal Synthesis Chemical synthesis methods Metal oxides (VxOy, WOx, ZnO, etc.) Graphene (GO, rGO) Nanostructures Nanocomposites Structural properties Optoelectronic properties

Research Focus:

Based on the provided publications, Issam Derkaoui’s research primarily focuses on the structural, electronic, and optical properties of various materials, including ZnO nanowires, graphene nanohybrids, and metal oxides. His investigations span experimental and theoretical approaches, employing techniques such as first-principles calculations and experimental characterization methods. Derkaoui’s work contributes to advancing our understanding of nanocomposites, thin films, and semiconductor materials, with applications ranging from optoelectronic devices to photodetectors. Overall, his research interests lie at the intersection of materials science, nanotechnology, and computational physics, aiming to drive innovations in diverse technological domains.

PublicationsĀ 

  1. Optimization of the luminescence and structural properties of Er-doped ZnO nanostructures: effect of dopant concentration and excitation wavelength, cited by: 21, Publication date: 2022.
  2. Improved first-principles electronic band structure for cubic (Pm3m) and tetragonal (P4mm, P4/mmm) phases of BaTiO3 using the Hubbard U correction, Publication date: 2023.
  3. Overview of the Structural, Electronic and Optical Properties of the Cubic and Tetragonal Phases of PbTiO3 by Applying Hubbard Potential Correction, Publication date: 2023.
  4. Thermionic Emission of Atomic Layer Deposited MoO3/Si UV Photodetectors, Publication date: 2023.
  5. Effect of strontium (Sr) doping on the structural, electronic and optical properties of ZnO, by first-principles calculations, Publication date: 2023.
  6. Reduced graphene oxide-functionalized zinc oxide nanorods as promising nanocomposites for white light emitting diodes and reliable UV photodetection devices, Publication date: 2023.
  7. Impact of thickness on optoelectronic properties of α-MoO3 film photodetectors: Integrating first-principles calculations with experimental analysis, Publication date: 2023.
  8. Self-Powered UV Photodetector Utilizing Plasmonic Hot Carriers in 2D α-MoO3/Ir/Si Schottky Heterojunction Devices, Publication date: 2023.
  9. Investigation of structural and optical properties of Mg doped ZnS thin films prepared by Mist-CVD technique: Experimental and theoretical aspects,Ā Publication date: 2024.
  10. The interface structural, electronic and optical properties of ZnO nanowires/Graphene nanohybrid (ZnO NWs/G): Experimental and theoretical DFT investigations, Publication date: 2024.

 

.