Bei Chen | High energy physics | Best Researcher Award

Ms. Bei Chen | High energy physics | Best Researcher Award

Tianjin University of Technology | China

Chen Bei is a dynamic Photoelectric Chip Engineer specializing in Condensed Matter Physics with a focus on inorganic semiconductor materials and devices. With solid academic roots and research training from prestigious institutions like Tianjin University of Technology and National University of Defense Technology, Chen Bei is known for his hands-on expertise in photoelectric device fabrication, characterization, and broadband photodetectors. His works contribute to both civilian innovations and defense technologies, demonstrating a rare blend of academic excellence and applied engineering acumen.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Chen Bei began his academic journey in Physics at Inner Mongolia University for Nationalities, where he ranked Top 3 of 50 students and held a leadership role as Vice Minister in the student organization department. His undergraduate studies emphasized quantum mechanics, solid-state physics, and electrodynamics, laying the groundwork for a career in advanced material science. His academic excellence continued with a Master’s in Condensed Matter Physics at Tianjin University of Technology, where he consistently ranked in the top 5 and received competitive scholarships and teaching responsibilities.

💼 Professional Endeavors

Currently serving as a Photoelectric Chip Engineer at the Jiangtian Research Group (National University of Defense Technology), Chen Bei’s role includes testing photoelectric chip packaging, bare die analysis, and optical path construction. This position builds on his experience in device fabrication, gained through years of semiconductor research. His ongoing work explores integration strategies for military-grade silicon-based photonic systems, marking a critical step in real-world technological deployment. His engineering contributions are aligned with national priorities and show potential for both academic and industrial breakthroughs.

🔬 Contributions and Research Focus

Chen Bei’s research spans self-powered broadband photodetectors, artificial retina simulation, optically controlled logic, and device integration for defense. Notable among these is his published work in ACS Applied Materials & Interfaces, where he developed a CuInS₂/SnO₂-based detector for encrypted optical communication. His focus on interfacial engineering using TiO₂ layers and metal ion doping shows deep engagement with optimizing device sensitivity and functionality across UV–Vis–NIR bands. These contributions are not only novel but also have tangible technological applications.

🌐 Impact and Influence

Chen Bei’s research has already gained peer recognition, with publications in high-impact journals and ongoing projects that promise cross-disciplinary relevance in biophotonics, optoelectronics, and secure communications. His work on retina-inspired photodetectors and photoelectric logic systems can significantly influence medical imaging, wearable sensors, and neuromorphic computing. Within his research institutions, he is recognized as a bridge between theory and application, contributing meaningfully to team outcomes while enhancing national R&D capabilities in semiconductor optics.

📚 Academic Citations

Chen Bei’s primary publication in ACS Applied Materials & Interfaces has received early attention in the material sciences and applied physics community. His upcoming article in Materials Today Energy a high-impact journal will further solidify his standing in energy-sensitive optoelectronic applications. With growing citation potential and interdisciplinary value, his publications are expected to form reference points for future research in low-power photoelectronic systems and bio-inspired photonic devices.

🧪 Research Skills

Chen Bei possesses strong experimental proficiency, including semiconductor material synthesis (spin-coating, hydrothermal, chemical bath deposition) and advanced characterization (SEM, TRPL, XRD, UV-Vis spectroscopy). His fluency with electronic instrumentation like Keithley source meters, vector network analyzers, and electrochemical workstations enables accurate and nuanced analysis of device behavior. He also designs and fabricates devices independently skills that mark him as a complete researcher from concept to validation. His strong grip on Origin, JADE, and Layout software also facilitates precise data interpretation and device simulation.

👨‍🏫 Teaching Experience

As a graduate teaching assistant at Tianjin University of Technology, Chen Bei supported students in both practical laboratory sessions and coursework in advanced physics topics. His ability to explain complex concepts like semiconductor devices, photonic behavior, and materials characterization reflects his aptitude for mentorship. He played a pivotal role in connecting theoretical learning with lab-based exploration an experience that underlines his capacity to contribute in academic or training-focused environments.

🏅 Awards and Honors

Chen Bei has consistently ranked among the top students, earning Second-Class Scholarships during both his bachelor’s and master’s studies. His selection as Vice Minister of the student organization department reflects strong leadership and organizational abilities. Recognition as a graduate assistant also attests to his teaching competence and trust within the academic community. These accolades, coupled with peer-reviewed publications, position him as a rising talent in applied physics and engineering.

🌟 Legacy and Future Contributions

Chen Bei is positioned to become a thought leader in optoelectronic integration and semiconductor device engineering. His work has the potential to impact military-grade communication, biomimetic sensors, and self-powered IoT technologies. With growing experience in multidisciplinary collaborations, and exposure to real-world implementation scenarios, he is set to define the next wave of photoelectric innovation. As he continues to evolve, his blend of scientific insight, engineering rigor, and innovation-minded focus will be instrumental in shaping future technologies.

Publications Top Notes

UV-Vis-NIR Broad-Band Self-Powered CuInS₂/SnO₂ Photodetectors and the Application in Encrypted Optical Communication
  • Authors: Chen Be
    Journal: ACS Applied Materials & Interfaces
    Year: 2024

Insertion Layer of TiO₂ to Improve the UV−Vis−NIR Photoresponse Characteristics of CuInS₂/SnO₂ Self-Powered Photodetectors and Its Application in Artificial Retinas
  • Authors: Chen Bei
    Journal: Materials Today Energy
    Year: 2024

 

Xiangling Tian | High energy physics | Best Researcher Award

Assoc. Prof. Dr. Xiangling Tian | High energy physics | Best Researcher Award

University of Electronic Science and Technology of China | Yangtze Delta Region Institute (Quzhou) | China

Dr. Xiangling Tian is an accomplished Associate Researcher at the University of Electronic Science and Technology of China and the Yangtze Delta Region Institute (Quzhou). With a Ph.D. in Materials Science, his research focuses on optoelectronic devices, nanowire-based scintillators, and nonlinear optics. He has held research positions at prestigious institutions, including Zhejiang Laboratory and Nanyang Technological University in Singapore. His expertise lies in advanced photonic materials, smart medical imaging technologies, and optical properties of low-dimensional semiconductors. A dynamic and emerging figure in material sciences, Dr. Tian has made substantial contributions through high-impact research, international collaborations, and innovative technologies.

👨‍🎓Profile

Scopus 

ORCID

🎓 Early Academic Pursuits

Dr. Tian’s academic journey began with a B.Sc. in Physics from Qufu Normal University, where he laid a solid foundation in theoretical and experimental physics. He earned his M.Sc. in Condensed Matter Physics at Zhejiang Normal University, focusing on mechanoluminescence. His academic ascent culminated in a Ph.D. in Materials Science from South China University of Technology (2015–2018), under Prof. Jianrong Qiu, with a dissertation on optical nonlinearity in transition metal chalcogenides and bismuth oxyselenide. These formative years shaped his deep interest in photonic materials and advanced optical phenomena.

💼 Professional Endeavors

Dr. Tian has undertaken several impactful research roles. At Nanyang Technological University, he explored multidimensional perovskites for high-performance light-emitting devices. As an Associate Researcher at Zhejiang Laboratory, he contributed to near-infrared materials and smart fibers. Since 2022, he has held a leading role at UESTC, where he conducts research, mentors young talent, and advances technology transfer initiatives. His professional work demonstrates a balance of scientific leadership, project execution, and collaborative innovation across interdisciplinary domains, particularly in optoelectronics, nanomaterials, and biomedical imaging.

🔬 Contributions and Research Focus

Dr. Tian’s research centers on smart medical imaging devices, high-resolution scintillators, and nonlinear optical materials. He is the Principal Investigator (PI) of several key national and regional projects, including those on DBR lasers, nanowire waveguides, and perovskite quantum dots. His interdisciplinary work connects materials science, photonics, and device engineering, with applications ranging from X-ray imaging to NIR spectroscopy. He is also advancing flexible scintillators and artificial muscle fibers, reflecting his interest in next-generation wearable and biomedical technologies. His research not only expands scientific knowledge but also drives real-world innovations.

🌍 Impact and Influence

Dr. Tian’s work has made significant academic and societal impacts. His research outcomes have enhanced the performance of medical imaging systems, contributed to green optoelectronics, and led to highly cited publications in journals like Advanced Optical Materials and ACS Applied Materials & Interfaces. He actively contributes as a peer reviewer for top journals and has helped organize international conferences, demonstrating his influence in the global scientific community. His innovations in nonlinear optics and nanowire-based scintillators are gaining attention across photonics and materials science sectors, showcasing his growing influence as a thought leader.

📚 Academic Cites

Dr. Tian has published over 15 journal articles, including first-author and corresponding-author papers in SCI-indexed journals such as Nanoscale, Ceramics International, and Journal of Materials Chemistry C. His works are increasingly cited by peers in fields spanning photonics, optics, materials science, and biomedical engineering. He has also co-authored a Springer book and contributed to book chapters, further expanding his academic footprint. With multiple ongoing projects funded by NSFC, his publications continue to influence emerging research on scintillation, laser technologies, and nonlinear optical phenomena.

🛠️ Research Skills

Dr. Tian possesses strong interdisciplinary and technical proficiencies. His laboratory expertise includes TEM, SEM, AFM, XRD, and FTIR, while his computational toolkit covers MATLAB, Python, and data analysis for photonic simulations. He excels in nanomaterial synthesis, glass ceramics, and quantum dot engineering, particularly for light emission and imaging applications. His hands-on ability in fabrication and characterization supports the development of cutting-edge optical devices. With excellent project management and proposal writing experience, he is a complete researcher bridging lab-based innovation and practical device application.

👩‍🏫 Teaching Experience

While primarily research-focused, Dr. Tian is actively involved in talent cultivation through mentorship and research supervision. At UESTC, he engages with graduate students and junior researchers, providing guidance on project design, experimentation, and publication. His academic mentoring is supported by his international exposure and practical lab skills. Though formal teaching roles are less emphasized in his profile, his impact on training future scientists through hands-on instruction and project leadership is evident, especially in high-tech fields like nanophotonics and bioimaging materials.

🏆 Awards and Honors

Dr. Tian’s excellence has been recognized through several prestigious awards. He won the Zhejiang Provincial Natural Science Award (Second Prize) for his work on low-dimensional semiconductors and photonic applications. He was a Finalist in the Yuanchuang Cup Innovation Competition for designing a bionic compound eye system. Additionally, he received the Outstanding Ph.D. Dissertation Award and was named an Outstanding Graduate Student in Guangdong. These honors underscore his scientific creativity, innovation, and leadership within the academic and applied research communities.

🚀 Legacy and Future Contributions

Looking ahead, Dr. Tian aims to drive advancements in high-performance biomedical imaging, flexible photonic devices, and quantum optoelectronics. His legacy will likely include bridging fundamental research with translational technologies, impacting healthcare, defense, and energy sectors. By mentoring young scientists and leading collaborative research efforts, he is shaping a sustainable and inclusive scientific culture. With his robust publication record, research funding success, and international outlook, Dr. Tian is poised to make lasting contributions as a visionary leader in materials science and photonics innovation.

Top Noted Publications

High-temperature X-ray Time-lapse Imaging Based on the Improved Scintillating Performance of Na₅Lu₉F₃₂:Tb³⁺ Glass Ceramics

  • Authors: Rongfei Wei*, Ying Chen, Li Wang, Junwei Pan, Xiangling Tian*, Fangfang Hu, and Hai Guo*

  • Journal: Advanced Optical Materials

  • Year: 2025

Improved broadband luminescence in Gd₂GaSb₁₋ₓTaₓO₇:Cr³⁺,Yb³⁺ pyrochlore phosphors: Near-infrared spectroscopic applications and dual-mode optical thermometry

  • Authors: Ligan Ma, Rongfei Wei*, Qingqing Yu, Peican Dai, Xiangling Tian⁎⁎, Fangfang Hu, Hai Guo***

  • Journal: Materials Today Chemistry

  • Year: 2024

Enhanced scintillating performance in Tb³⁺ doped oxyfluoride glass for high-resolution X-ray imaging

  • Authors: Lanjiao Li, Rongfei Wei*, Li Wang, Xiangling Tian⁎⁎, Xiaoman Li, Fangfang Hu, Hai Guo***

  • Journal: Ceramics International

  • Year: 2024

Achieving an Improved NIR Performance of Ca₄₋ₓSc₂ₓZr₁₋ₓGe₃O₁₂:Cr³⁺ via [Sc³⁺-Sc³⁺] → [Ca²⁺-Zr⁴⁺]

  • Authors: Ying Chen, Rongfei Wei*, Lanjiao Li, Xiangling Tian*, Fangfang Hu, and Hai Guo*

  • Journal: Inorganic Chemistry

  • Year: 2024

Enhanced thermal stability of broadband NIR phosphors Ca₃.₃Mg₀.₇ZrGe₃O₁₂:Cr³⁺ for pc-LEDs

  • Authors: Lanjiao Li, Ying Chen, Rongfei Wei*, Siyu Guo, Xiangling Tian*, Fangfang Hu, Hai Guo*

  • Journal: Journal of Alloys and Compounds

  • Year: 2025

 

 

 

WAEL CHOUK | High energy physics | Young Scientist Award

Dr. WAEL CHOUK | High energy physics | Young Scientist Award

Post-Doc at Faculty of Sciences of Bizerte | Tunisia

Dr. Wael Chouk is a dedicated Tunisian physicist specializing in materials physics, particularly in the field of dielectric and superconducting materials. With a PhD earned from the Faculty of Sciences of Bizerte, University of Carthage, he has demonstrated a consistent track record of academic excellence, international research experience, and pedagogical commitment. His profile reflects a unique blend of technical expertise, research passion, and community involvement.

👨‍🎓Profile

Scopus

📘 Early Academic Pursuits

Dr. Chouk began his academic journey with a preparatory cycle in engineering (Math-Physics) from 2012 to 2015 at the Preparatory Institute for Engineering Studies, Nabeul. He then pursued a Fundamental Physics degree (2015–2017) and a Master’s in Physics (2017–2020), graduating with honors. His early research centered on materials structure and properties, laying the foundation for his future in high-impact experimental physics.

🧑‍🏫 Professional Endeavors

Wael’s career is marked by consistent involvement in academic teaching and research supervision. As a part-time lecturer at the Faculty of Sciences of Bizerte (2021–2022), he taught practical physics and later co-supervised Master’s research projects in 2023 and 2024. His teaching was not just instructional but also developmental, helping students build critical skills in dielectric materials and experimental analysis.

🔬 Contributions and Research Focus

His PhD work (2021–2024) explores the superconducting-supercapacitance transition in the complex ceramic YBa₂₋ₓCaₓCuβOδ, synthesized using the sol-gel method. His research involves advanced characterization techniques such as XRD, SEM, TEM, XPS, PPMS, and VSM, highlighting his expertise in materials synthesis and structural/magnetic analysis. His contributions to the field include two co-authored scientific papers on phase transitions and intrinsic permittivity in ceramic compounds.

🌍 Impact and Influence

Dr. Chouk has enhanced his research impact through international internships a two-month stay at BAU University in Turkey and a three-month program at ICMM in Madrid, part of CSIC. He has also presented at prestigious events like SMS’2024 and AdAMFM 2022, and showcased his work at the Innovation Fair by the ANPR, where his stand on electro-ceramics for high-energy-density capacitors demonstrated both academic relevance and real-world application.

📊 Academic Citations and Publications

Dr. Wael Chouk has authored notable publications including “Study of phase transition behavior and high dielectric properties in YBa₂₋ₓCaₓCu₃Oδ ceramics” and “Novel high intrinsic permittivity in new perovskite ceramic GdCa₂Cu₃Oδ”. These studies significantly contribute to the scientific understanding of ceramic-based high-performance materials, with impactful applications in electronics, energy storage, and superconductivity. His research enhances the academic literature and reflects a growing influence in the field of materials physics.

🧪 Research Skills

Dr. Wael Chouk demonstrates strong experimental and analytical skills, especially in material synthesis (sol-gel, ceramic fabrication) and advanced characterization techniques such as XRD, TEM, SEM, XPS, and EPR. He is also proficient in simulation and analysis tools including MATLAB, Origin, and Gaussian. His expertise in laboratory instrumentation and data interpretation equips him to contribute effectively to cross-disciplinary research and lead complex experimental projects, reflecting a robust and versatile research capability.

🧑‍🏫 Teaching Experience

His years as a part-time teacher and student supervisor reveal a solid commitment to academic mentorship. He has taught practical physics to undergraduate students and supported Master’s candidates in achieving their academic goals, especially in materials physics and dielectric behavior analysis.

🏅 Awards and Honors

While formal award titles are not specified, Dr. Wael Chouk’s participation in international conferences, prestigious research internships, and representation at innovation fairs reflect peer recognition and academic credibility. He holds valuable certifications in ISO 9001, ISO 50001, X-ray diffraction, project management, stress management, public speaking, and first aid. These accomplishments highlight his professional competence, leadership potential, and strong alignment with high research standards and institutional trust.

🌱 Legacy and Future Contributions

Dr. Wael Chouk is poised to leave a lasting impact on the field of applied materials physics. His future contributions are likely to lie at the intersection of ceramic materials, energy storage technologies, and magnetic-electrical coupling. With a strong foundation in both academic teaching and experimental research, he is a promising candidate for collaborative international projects, postdoctoral fellowships, and innovative research leadership.

Publications Top Notes

Study of phase transition behavior and high dielectric properties in YBa₂₋ₓCaₓCu₃Oδ ceramics

  • Authors: Wael Chouk, Khouloud Moualhi, Abdelhak Othmani, Mouldi Zouaoui
    Journal: Materials Chemistry and Physics
    Year: 2023

Novel high intrinsic permittivity in new perovskite ceramic GdCa₂Cu₃Oδ

  • Authors: Khouloud Moualhi, Wael Chouk, Youssef Moualhi, Abdelhak Othmani, Mouldi Zouaoui
    Journal: Materials chemistry and physics
    Year: 2024

Multifunctional chitosan/montmorillonite/TiO₂ nanocomposites: Correlating microstructure with dielectric and photocatalytic properties

  • Authors: Lahbib M., Mejri C., Bejaoui M., Chadha C., Oueslati A., Oueslati W.
    Journal: Journal of the Indian Chemical Society
    Year: 2025

Conduction mechanism investigation in YCa₂Cu₃Oδ colossal permittivity ceramics

  • Authors: Wael Chouk, Mohamed Annabi, Mouldi Zouaoui
    Journal: Results in Physics
    Year:2025