Yueling Yang | High energy physics | Best Researcher Award

Prof. Yueling Yang | High energy physics | Best Researcher Award

Professor at Henan Normal University | China

Yueling Yang is a Professor of Physics at Henan Normal University, specializing in theoretical particle physics. With extensive expertise in weak decays, quantum chromodynamics (QCD), and the phenomenology of B mesons, she has established herself as a prominent researcher in the field. Over the years, she has progressed from an Assistant Professor to a Professor, teaching and conducting research at one of China’s leading institutions in the realm of theoretical physics.

👨‍🎓Profile

Scopus

ORCID

📚Early Academic Pursuits

Yueling Yang’s academic journey began at Yanbei Normal University, where she obtained her Bachelor of Science in Physics (2000). She pursued her Master of Science in Theoretical Physics and later earned her Ph.D. in Theoretical Physics from Henan Normal University in 2014. Her graduate education laid a solid foundation for her future research endeavors, shaping her interests in particle physics and QCD phenomena.

👩‍🏫Professional Endeavors

Yang’s professional career spans over two decades, with extensive experience at Henan Normal University since 2003. After serving as an Assistant Professor at Yuncheng University, she returned to Henan Normal University in 2006. Over time, she was promoted to Lecturer, then Associate Professor, and finally, Professor. She currently holds the position of Professor of Physics at the Institute of Particle and Nuclear Physics, making her a key figure in academic leadership and research excellence.

🔬Contributions and Research Focus

Yueling Yang’s research primarily focuses on theoretical particle physics, specifically the study of weak decays of B mesons and heavy-flavored mesons. She has contributed to the understanding of nonfactorizable corrections in weak decays and the application of QCD factorization methods to nonleptonic decays. Her contributions also extend to the phenomenology of particle decays, an area central to understanding the standard model and searching for new physics beyond it.

🌍Impact and Influence

Yueling Yang’s work has had a substantial impact on the field of theoretical physics. Her research not only advances fundamental theoretical concepts but also bridges the gap between theoretical predictions and experimental possibilities, helping lay the groundwork for potential future experimental investigations in particle physics. Her publications, including 61 refereed journal articles, demonstrate her ongoing contribution to the academic community, and her work is often cited by leading researchers in the field.

📚 Academic Cites

Yueling Yang’s research has been widely cited in academic journals such as Eur. Phys. J. C, Phys. Rev. D, and Chin. Phys. C, demonstrating the scholarly reach and relevance of his contributions. His recent work on QED corrections and factorization approaches continues to gain traction among peers in the theoretical physics community.

🧪 Research Skills

Prof. Yang excels in theoretical modeling, perturbative QCD, and computational analysis for particle physics processes. His methodical approach to applying QCD factorization and examining nonperturbative effects enables nuanced predictions of weak decay channels. These skills have been critical in acquiring competitive funding from agencies like the National Natural Science Foundation of China.

📖Teaching Experience

As a renowned educator, Yueling Yang has played a crucial role in shaping the academic development of many students. She has received multiple teaching awards, including the “Top 10 Distinguished Teachers” and the “Outstanding Teachers” awards from Henan Normal University. Her commitment to excellence in teaching is also reflected in her work as an Excellent Master’s Thesis Supervisor, an honor she will continue to hold into 2024.

🏅 Awards and Honors

Prof. Yang has received 6 major honorary titles, including:

  • 🏆 Excellent Master’s Thesis Supervisor of Henan Province (2024)

  • 🥈 Second Class Prize of the Henan Natural Science Award (2023)

  • 🌟 Outstanding Teacher and Example Lesson recognitions from Henan Normal University (2018, 2021)

  • 🎓 Top 10 Distinguished Teachers (2015)

These accolades reflect his all-around excellence in both education and research.

🧬 Legacy and Future Contributions

Looking ahead, Prof. Yueling Yang continues to expand his research on new physics effects in heavy meson decays and aims to bridge theory with upcoming experimental data from international particle collider facilities. His legacy is being shaped not only through his scientific contributions but also by the next generation of physicists he mentors. With new research grants and international collaborations underway, Prof. Yang is poised to make even deeper contributions to the understanding of fundamental particles and forces.

Publications Top Notes

The QED nonfactorizable correction to the semileptonic charmed three-body B decays

  • Authors: Yueling Yang, Liting Wang, Jiazhi Li, Qin Chang, Junfeng Sun
    Journal: European Physical Journal C
    Year: 2024

CEPC Technical Design Report: Accelerator

  • Authors: Waleed Abdallah, Tiago Carlos Adorno de Freitas, Konstantin G. Afanaciev, Tianlu Chen, Wei Chen
    Journal: Radiation Detection Technology and Methods
    Year: 2024

STCF conceptual design report (Volume 1): Physics & detector

  • Authors: M. N. Achasov, X. C. Ai, L. P. An, Baolin Hou, T. J. Hou
    Journal: Frontiers of Physics
    Year: 2024

Possibility of experimental study on nonleptonic weak decays

  • Authors: Yueling Yang, Liting Wang, Jinshu Huang, Qin Chang, Junfeng Sun
    Journal: Chinese Physics C
    Year: 2023

Feasibility of searching for the Cabibbo-favored D∗ → K ¯ π+, K ¯ ∗π+, K ¯ ρ+ decays

  • Authors: Yueling Yang, Kang Li, Zhenglin Li, Qin Chang, Junfeng Sun
    Journal: Physical Review D
    Year: 2022

 

Mohammed salah Abd El minem | High energy physics | Physics Excellence in Industry Award

Dr. Mohammed salah Abd El minem | High energy physics | Physics Excellence in Industry Award

Assistant Professor at Physics Department, Faculty of Science, Al-Azhar University, Egypt

Mohamed Salah Abdel-Moneim Youssef is an Assistant Lecturer at the Department of Physics at Al-Azhar University, Assiut, Egypt. He holds a Bachelor’s degree in Physics (2012) and a Master’s degree from Al-Azhar University with a focus on optical properties of BiI3 thin films. He has been actively involved in teaching, research, and scientific activities, contributing significantly to the field of material science and optoelectronics.

👨‍🎓Profile

Google scholar

ORCID

Early Academic Pursuits 🎓

Mohamed began his academic journey at Al-Azhar University, where he earned his Bachelor’s degree in Physics in 2012. His academic prowess and commitment to the field were recognized when he was appointed as a Demonstrator in the Department of Physics in 2018. This early appointment demonstrated his passion for physics and his readiness to contribute to the academic community.

Professional Endeavors 🏢

Since 2018, Mohamed has worked as an Assistant Lecturer at Al-Azhar University, where he teaches both undergraduate and preparatory dental students. His teaching responsibilities include specialized courses such as Solid-State Physics, Electronics, Semiconductors, Nuclear Physics, and Modern Physics. His teaching experience reflects his broad knowledge of physics and his ability to simplify complex concepts for diverse student groups.

Contributions and Research Focus 🔬

Mohamed’s primary research focuses on material science and optoelectronics, particularly the structural and optical properties of thin films. His Master’s thesis was centered around the impact of gamma-irradiation on BiI3 thin films, aiming to improve optoelectronic devices. Two notable publications emerged from this research, contributing to the understanding of optical parameters in photovoltaic and nonlinear applications.

His PhD research continued to explore materials science, specifically the substitution of BaTiO3 in lead borosilicate glass for ultrasonic applications, published in the Journal of Materials Science: Materials in Electronics.

Impact and Influence 🌍

Through his research and academic contributions, Mohamed has played a key role in advancing the study of materials for optoelectronic applications. His work on BiI3 thin films and BaTiO3-substituted borosilicate glass has the potential to impact industries related to photovoltaics, optoelectronics, and ultrasonic technologies. By focusing on improving material properties, his research has practical applications that can enhance the performance and efficiency of various technologies.

Academic Cites 📚

Mohamed’s research has garnered recognition in prominent scientific journals. His paper on BaTiO3 substitution in borosilicate glass was published in the Journal of Materials Science: Materials in Electronics (35 (22), 1534). Additionally, his Master’s research resulted in two significant papers that have been well-received in the field of optoelectronics. These publications contribute to the growing body of knowledge in the field of materials science and physics.

Research Skills 🔍

Mohamed is proficient in a variety of research methodologies, including material characterization techniques such as ball milling, gamma-irradiation, and thin film deposition. He has hands-on experience in structural and optical characterization of materials, specifically in the context of optoelectronic applications. His analytical skills and ability to synthesize complex data enable him to draw meaningful conclusions that enhance our understanding of material properties.

Teaching Experience 🎓

In addition to his research activities, Mohamed has been actively involved in teaching physics since 2018. He has taught a variety of courses, including both general physics and specialized courses in solid-state physics, semiconductors, and nuclear physics. His ability to communicate complex ideas clearly and his commitment to educating the next generation of scientists demonstrate his dedication to academic excellence.

Legacy and Future Contributions 🚀

Looking forward, Mohamed is poised to continue making significant contributions to materials science and optoelectronics. His ongoing research, particularly in optical and ultrasonic technologies, holds immense potential for future industrial applications. As he continues to expand his research, collaborate with other researchers, and enhance his teaching, Mohamed will likely leave a lasting impact on both the academic and industrial communities.

Publications Top Notes

Structural and optical investigations of multi-component lead-borosilicate glasses containing PbO, BaO, and TiO2

  • Authors: M. Salah, El Sayed Moustafa, A.A. Showahy
    Journal: Optical Materials
    Year: 2025

Influence of BaTiO3 substitution on structural and thermal response of lead borosilicate glass for ultrasonic applications

  • Authors: M. Salah, El Sayed Moustafa, A.A. Showahy
    Journal: Journal of Materials Science: Materials in Electronics
    Year: 2024

Influence of γ-irradiation dose on the structure, linear and nonlinear optical properties of BiI3 thick films for optoelectronics

  • Authors: AM Abdelnaeim, M Salah, E Massoud, A EL-Taher, ER Shaaban
    Journal: Digest Journal of Nanomaterials & Biostructures (DJNB)
    Year: 2022

Optical parameters of various thickness of bismuth (III) iodide thin films for photovoltaic and nonlinear applications

  • Authors: M Salah, A Abdelnaeim, S Makhlolf, A El-Taher, ER Shaaban
    Journal: International Journal of Thin Film Science & Technology
    Year: 2022

A new one-parameter lifetime distribution and its regression model with applications

  • Authors: MS Eliwa, E Altun, ZA Alhussain, EA Ahmed, MM Salah, HH Ahmed, …
    Journal: PLOS ONE
    Year: 2021

 

Zhen-hua Zhao | Particle Physics and Cosmology | Best Researcher Award

Prof. Dr. Zhen-hua Zhao | Particle Physics and Cosmology | Best Researcher Award

Vice President at Liaoning Normal University | China

Zhen-hua Zhao is a distinguished Professor, Vice Dean, and Doctoral Supervisor at the School of Physics and Electronic Technology, Liaoning Normal University. With a strong academic background, he holds a Master’s and Doctoral degree from the Institute of Theoretical Physics, Chinese Academy of Sciences and completed his postdoctoral research at the Institute of High Energy Physics, Chinese Academy of Sciences. Over the years, he has built a reputation in the field of neutrino physics and cosmology.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 🎓

Zhao’s academic journey began with his master’s and doctoral studies in Theoretical Physics at two of China’s top institutions the Institute of Theoretical Physics and the Institute of High Energy Physics at the Chinese Academy of Sciences. These early academic foundations equipped him with a solid understanding of particle physics and cosmology, areas which he has continued to focus on in his career. His doctoral research laid the groundwork for his later work in neutrino physics and the matter-antimatter asymmetry in the universe.

Professional Endeavors 🚀

As a Vice Dean, Professor, and Doctoral Supervisor at Liaoning Normal University, Zhao has been at the forefront of research and education in the field of Physics. His leadership extends beyond the classroom, where he has also been a mentor to future scientists in the field. Zhao is deeply involved in managing research projects, contributing to the development of new talent, and fostering an environment of academic excellence at his university.

Contributions and Research Focus 🔬

Zhao has made substantial contributions to neutrino physics, particularly in neutrino flavor physics and asymmetry in the universe. His research addresses some of the most pressing issues in cosmology, including the origin of matter-antimatter asymmetry. His expertise in high-energy physics has led to significant advancements in neutrino phenomenology, which has direct implications for our understanding of the universe’s evolution. Notable projects include his leadership in studies of neutrinoless double beta decay and other aspects of neutrino interactions.

Impact and Influence 🌍

Zhao’s work has had a far-reaching impact on the field of high-energy physics, with over 40 SCI papers published in top journals like JHEP, PRD, EPJC, and PLB. His research has provided key insights into the flavor physics of neutrinos and contributed to theoretical models addressing the matter-antimatter imbalance in the cosmos. In addition to his publications, Zhao has served as a reviewer for nine prominent journals, playing a pivotal role in shaping scientific discourse in neutrino physics.

Academic Citations 📚

Zhao has been recognized for his impactful work, with 35 of his 40 papers authored as first author or corresponding author. This includes 11 independent author papers, indicating his leadership in the scientific community. Two of his papers were published in the prestigious Reports on Progress in Physics, one of which earned him the 2019 China Top Cited Author Award by IOP Publishing. His work in neutrino physics has received extensive academic attention, with his citations reflecting the influence and relevance of his research.

🧪 Research Skills

Dr. Zhao possesses a comprehensive skill set in theoretical modeling, particle phenomenology, and cosmological simulation, with specialized competence in neutrino oscillation theory, flavor mixing, and CP violation studies. His interdisciplinary approach integrates quantum field theory, cosmological observations, and data-driven theoretical predictions.

👨‍🏫 Teaching Experience

As a Doctoral Supervisor, Dr. Zhao has mentored numerous graduate students and postdoctoral researchers. He has also delivered lectures at graduate summer schools, providing in-depth reviews of current developments in neutrino physics. His role in academia includes developing curricula and promoting cutting-edge research training at the university level.

🏅 Awards and Honors

Dr. Zhao has led three National Natural Science Foundation of China (NSFC) projects and has been recognized as a Top Young Talent under the “Xingliao Talent Plan” in Liaoning Province. In 2024, he was selected as an Outstanding Reviewer for the journal Chinese Physics C, reflecting his commitment to maintaining scientific integrity and rigor in the field.

🌟Legacy and Future Contributions 

Zhao’s future contributions are poised to shape the next frontier in high-energy physics and neutrino studies. His continued leadership in neutrino phenomenology and cosmology will likely yield breakthroughs that further our understanding of the fundamental forces of nature. His ongoing participation in major international projects, including the JUNO experiment and neutrinoless double beta decay experiments, suggests that his influence on both academic research and scientific policy will only grow. His legacy will not only impact the academic world but will also contribute to global scientific collaborations and innovation in high-energy physics.

Publications Top Notes

Low scale leptogenesis under neutrino μ-τ Reflection symmetry

  • Authors: Yan Shao, Zhenhua Zhao
    Journal: Physical Review D, 2025

Complete study of RG evolution induced leptogenesis in flavor symmetry scenarios

  • Authors: Zhenhua Zhao, Xiangyi Wu, Jing Zhang
    Journal: Physical Review D, 2024

Purely flavored leptogenesis from a sudden mass gain of right-handed neutrinos

  • Authors: Zhenhua Zhao, Jing Zhang, Xiangyi Wu
    Journal: Journal of High Energy Physics, 2024

Leptogenesis consequences of trimaximal mixing and μ-τ reflection symmetry in the most minimal seesaw model

  • Authors: Zhenhua Zhao, Hongyu Shi, Yan Shao
    Journal: Physical Review D, 2024

 

 

Vien Vo Van | High-Energy Physics | Best Researcher Award

Assoc. Prof. Dr. Vien Vo Van | High-Energy Physics | Best Researcher Award

Lecturer at Tay Nguyen University | Vietnam

Dr. Vo Van Vien is a Senior Lecturer at Tay Nguyen University, specializing in Theoretical Physics with an emphasis on Neutrino Physics and Standard Model Extensions. He has an impressive academic background with a Bachelor’s degree from Vinh University, a Master’s from Ha Noi National University of Education, and a Doctorate from the Institute of Physics, Vietnam. His research primarily focuses on high-energy physics and particle phenomenology.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 📚

Dr. Vien’s academic journey began with a Bachelor’s degree in Theoretical Physics from Vinh University (1999-2003), followed by a Master’s degree in Theoretical Physics and Mathematical Physics from Ha Noi National University of Education (2006-2008). He then pursued a PhD at the Institute of Physics (2009-2014), where his research deepened his expertise in neutrino physics and discrete symmetry models.

Professional Endeavors 💼

Dr. Vien has been a Senior Lecturer at Tay Nguyen University since 2004, where he continues to teach and mentor the next generation of physicists. His academic position has allowed him to lead several high-impact research projects in particle physics, neutrino mass mixing, and flavor symmetries. Notably, he has been the Principal Investigator for multiple funded projects including studies on lepton and quark mixings in extended Standard Models.

Contributions and Research Focus 🔬

Dr. Vien’s research contributions have been pivotal in extending the Standard Model, especially in neutrino physics, particle mass mixing, and discrete symmetries. His projects have explored a range of models like B-L models, flavor symmetries (e.g., A4, S4, Z4), and the muon anomaly. He has also contributed significantly to understanding neutrino oscillation phenomenology and the implications for dark matter in various extended models.

Impact and Influence 🌍

Dr. Vien’s work has significantly impacted the field of particle physics and neutrino phenomenology. His research on neutrino mass, mixing, and symmetry breaking models has been widely cited and recognized in global academic circles. His collaborations with prominent researchers and his leadership in international research projects underscore his influence in advancing high-energy physics.

📑 Academic Cites

Through his cutting-edge research, Dr. Vien has garnered significant recognition within the scientific community. His publications and citations have had a noticeable impact on the development of high-energy physics and mathematical models used in modern particle physics. His research has been cited by peers, especially those exploring theoretical extensions of the Standard Model and the neutrino sector.

Research Skills 🛠️

Dr. Vien has exceptional skills in Theoretical Physics, particularly in neutrino phenomenology, standard model extensions, and discrete symmetries. His expertise in mathematical models is complemented by proficiency in high-energy particle simulations and advanced theoretical methods, ensuring his research is at the cutting edge of particle physics.

Teaching Experience 🧑‍🏫

As a Senior Lecturer at Tay Nguyen University, Dr. Vien has mentored and inspired numerous students in theoretical physics and mathematical physics. He is known for his innovative teaching methods, combining advanced theoretical concepts with practical examples to help students understand complex phenomena in high-energy physics. His dedication to education ensures that his students are well-prepared to pursue careers in both academia and industry.

Awards and Honors 🏅

Dr. Vien has received several awards and accolades for his academic excellence and research leadership, including:

  • National Foundation for Science and Technology Development grants for his research on Fermion mass and mixing.

  • Tay Nguyen University Principal Investigator awards for his work in extending the Standard Model and exploring new physics.

  • Recognition in peer-reviewed journals for his groundbreaking research in neutrino physics and dark matter.

Legacy and Future Contributions 🌠

Dr. Vo Van Vien’s legacy lies in his substantial contributions to particle physics and his dedication to educating future generations of physicists. His ongoing research promises to further unravel the complexities of neutrino physics, dark matter, and the Standard Model extensions. With a vision of pushing the boundaries of high-energy physics, Dr. Vien is poised to make lasting contributions to theoretical physics that could have a profound impact on how we understand the universe.

Publications Top Notes

Realistic fermion mass and mixing in U(1)L model with A4 flavor symmetry for Majorana neutrino

  • Authors: V.V. Vien, Vo Van
    Journal: Indian Journal of Physics
    Year: 2025

Lepton masses and mixings with broken μ−τ symmetry in a B – L extended 3HDM based on (Z2×Z4)⋊Z2 (I) symmetry

  • Authors: V.V. Vien, Vo Van
    Journal: Chinese Journal of Physics
    Year: 2025

The μ−τ reflection symmetry breaking in a B−L model with T7×Z8×Z2 symmetry

  • Authors: V.V. Vien, Vo Van
    Journal: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
    Year: 2024

A4×Z2×Z4 flavor symmetry model for neutrino oscillation phenomenology

  • Authors: V.V. Vien, Vo Van
    Journal: Revista Mexicana de Fisica
    Year: 2024

Fermion masses and mixings and g − 2 muon anomaly in a Q6 flavored 2HDM

  • Authors: V.V. Vien, Vo Van, H.N. Long, A.E. Cárcamo Hernández, J. Marchant González
    Journal: Nuclear Physics, Section B
    Year: 2024

 

 

 

Ngangkham Nimai Singh | High energy physics | Distinguished Scientist Award

Prof. Dr. Ngangkham Nimai Singh | High energy physics | Distinguished Scientist Award

Professor at Manipur University | India

Dr. Ngangkham Nimai Singh is a distinguished Theoretical Physicist and the current Director of the Research Institute of Science and Technology (RIST) in Manipur. With an academic career spanning over 30 years, Dr. Singh has made remarkable contributions to High Energy Physics (HEP) and is an influential figure in scientific research and education. His expertise in Grand Unified Theories (GUTs), Neutrino Physics, and QCD-oriented hadronic models makes him a globally recognized scientist.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 🎓

Dr. Singh’s educational journey began in Manipur, where he completed his early schooling before moving to Delhi University. There, he earned a B.Sc. in Physics (Hons.) in 1979, followed by an M.Sc. in Physics in 1981. His pursuit of higher knowledge led to an M.Phil. (1984) and a Ph.D. in Physics (1989), both from Delhi University, under the mentorship of the esteemed Prof. A. N. Mitra. Dr. Singh’s early academic training laid the foundation for his later contributions to theoretical physics.

Professional Endeavors 🌍

Dr. Singh’s professional career includes over 22 years of service at Gauhati University, where he held the positions of Lecturer, Reader, and eventually Professor. As Head of the Department of Physics (2010–2013), he played a crucial role in the department’s development. From 2013–2014, he served as a Professor and Head at Manipur University. Additionally, Dr. Singh has held various important positions such as Controller of Examination (I/C) at Manipur University and a PAC Member for International Cooperation/Physics at DST, New Delhi. His leadership extends to scientific bodies like PANE, NEAS, and MAPS.

Contributions and Research Focus 🔬

Dr. Singh’s research has had a transformational impact in the field of Theoretical High Energy Physics (HEP). His research interests include:

  • Grand Unified Theories (GUTs) such as SU(5) and SO(10), exploring the unification of the fundamental forces of nature.

  • Neutrino Physics, focusing on the origin of neutrino masses and mixings.

  • Baryogenesis through Leptogenesis, aiming to understand the matter-antimatter asymmetry in the universe.

  • Higgs Physics and Proton Decay, investigating the fundamental particles and forces.

  • Relativistic Few-Quark Dynamics and Quark Confinement, including QCD-oriented hadronic models and Bethe Salpeter Dynamics.

His research has contributed significantly to the understanding of the standard model of particle physics and beyond, particularly in the areas of neutrino masses, Higgs boson properties, and proton decay.

Impact and Influence 🌐

Dr. Singh’s impact extends far beyond his research. His role as a founding member of numerous scientific organizations, including the North East Academy of Sciences (NEAS), Physics Academy of North East (PANE), and Manipur Centre of Scientific Culture, highlights his dedication to the promotion of science in the northeastern region of India. Dr. Singh has also served as a visiting associate at prestigious institutions like PRL Ahmedabad and ICTP Trieste, fostering global collaborations. As President of PANE, he has worked tirelessly to advance scientific education and promote collaboration among physicists in the region, shaping the future of Physics in Northeast India.

Academic Cites 📚

Dr. Singh’s work has been cited in numerous academic papers and has contributed to the development of Grand Unified Theories (GUTs) and Neutrino Physics. His research on quark dynamics and light-cone physics has helped refine QCD models and deepen the scientific understanding of hadronic structures. His findings in Higgs physics, Baryogenesis, and Proton Decay continue to be foundational for researchers in particle physics worldwide.

Research Skills 🔍

Dr. Singh is highly skilled in theoretical modeling and quantitative analysis, focusing on complex phenomena in high-energy physics. His ability to formulate and solve problems in quantum chromodynamics (QCD), neutrino mass models, and baryogenesis is unmatched. Furthermore, his interdisciplinary approach, combining elements of quantum mechanics, relativistic dynamics, and cosmology, sets him apart as a pioneering researcher in his field.

Teaching Experience 🍎

With three decades of experience in academia, Dr. Singh has mentored and guided numerous graduate and postgraduate students. His role as a Professor and Head of the Department of Physics at Gauhati University and Manipur University allowed him to impart valuable knowledge on high-energy physics, theoretical models, and advanced quantum mechanics. He is also a respected research supervisor, helping students push the boundaries of particle physics.

Awards and Honors 🏅

Dr. Singh’s contributions have been widely recognized throughout his career:

  • Commonwealth Fellowship (1999-2000) at Southampton University, UK.

  • Visiting Associate at the Physical Research Laboratory (PRL), Ahmedabad.

  • Regular Associate at the ICTP, Trieste.

  • Member of the All India Theoretical Physics Seminar Circuit (2004-2005).

These accolades, along with his research collaborations and leadership in scientific societies, underscore his global recognition and influence in the scientific community.

Legacy and Future Contributions 🌱

Dr. Singh’s legacy is defined by his dedication to scientific progress and his mentorship of future generations of physicists. His involvement in founding scientific organizations in the Northeast has created lasting structures for the promotion of physics in the region. In the future, Dr. Singh’s research on neutrino physics, proton decay, and quark confinement is likely to continue influencing the field of high-energy physics. As a leader, educator, and researcher, he will undoubtedly leave an enduring mark on the scientific community, especially in advancing particle physics and cosmological theories.

Publications Top Notes

A5 symmetry and deviation from golden ratio mixing with charged lepton flavor violation

  • Authors: V. Puyam, Ngangkham Nimai Singh
    Journal: Nuclear Physics, Section B
    Year: 2025

Perturbation to μ -τ symmetry using type I and type II seesaw mechanisms under SU(2)L × Δ (27) × Z2 flavor symmetry

  • Authors: P. Wilina, Ngangkham Nimai Singh
    Journal: Modern Physics Letters A
    Year: 2025

Modular A4 symmetry in 3 + 1 active-sterile neutrino masses and mixings

  • Authors: Mayengbam Kishan Singh, Soram Robertson Singh, Ngangkham Nimai Singh
    Journal: International Journal of Modern Physics A
    Year: 2024

A randomly generated Majorana neutrino mass matrix using adaptive Monte Carlo method

  • Authors: Yuvraj Monitar Singh, Mayengbam Kishan Singh, Ngangkham Nimai Singh
    Journal: International Journal of Modern Physics A
    Year: 2024

Comparative analysis on the validity of golden ratio, tri-bimaximal, hexagonal and bimaximal neutrino mixing patterns under the radiative corrections

  • Authors: Yuvraj Monitar Singh, Moirangthem Shubhakanta Singh, Ngangkham Nimai Singh
    Journal: Physica Scripta
    Year: 2024

Shewa Getachew | High energy physics | Editorial Board Member

Mr. Shewa Getachew | High energy physics | Editorial Board Member

Lecturer at Wolkite University | Ethiopia

Shewa Getachew Mamo is a dedicated Physics Lecturer and researcher with a specialized focus on optical properties of nanocomposites, material science, refractive index, and group velocity. Passionate about advancing scientific knowledge, he is committed to both academic excellence and innovative research in the realm of condensed matter physics. His expertise extends to investigating local field enhancements, optical properties of nanostructures, and exploring nanoparticle-based materials and geometries.

👨‍🎓Profile

ORCID

Early Academic Pursuits 🎓

Shewa’s academic journey began at Wolkite University, where he earned his Bachelor’s degree in Physics (2016-2019) and later pursued a Master’s degree in Condensed Matter Physics (2022-2023). Throughout his education, he developed a strong foundation in experimental and theoretical physics, which propelled him into a career of teaching and research in the field.

Professional Endeavors 💼

Currently, Shewa serves as a Physics Teacher at Wolkite University (since December 2023). In this role, he is responsible for preparing and presenting undergraduate and sometimes postgraduate courses in various areas of physics, including mechanics, electromagnetism, thermodynamics, quantum mechanics, and material science. He plays a vital role in designing curricula, developing lesson plans, and selecting relevant textbooks to ensure effective learning outcomes. His academic influence extends to advising students on academic matters and guiding them through research projects.

Contributions and Research Focus 🔬

Shewa’s research focus is primarily on the optical properties of core-shell spherical nanocomposites and local field enhancements. His research aims to explore the interaction between optical fields and nanocomposites, as well as investigating the influence of depolarization on the local field enhancement factor in passive and active composites with pure metal spheroidal nanoinclusions. One of his notable research areas includes optical bistability in nanoparticle composites and the role of tunable dielectric cores in cylindrical core-shell nanocomposites.

Impact and Influence 🌍

Shewa’s research has led to significant contributions to the field of material science and nanotechnology, specifically in understanding the optical properties of nanostructured materials. His findings have been widely discussed in the scientific community, with numerous publications in prominent journals. He is committed to staying updated with the latest advancements in condensed matter physics and nanotechnology, consistently striving to push the boundaries of existing scientific knowledge.

Academic Cites 📚

Shewa’s work has been widely cited, with his contributions being recognized across several prestigious journals. His publications include studies such as:

  • Tsegaye, A., & Getachew, S. (2024). “Investigation Optical Properties of ZnTe@Ag Core-Shell Spherical Nanocomposites Within Varies Dielectric Host Matrices”. Advances in Materials, 13(4), 80-91.
  • Getachew, S. (2024). “Effect of Tunable Dielectric Core on Optical Bistability in Cylindrical Core-Shell Nanocomposites”. Advances in Condensed Matter Physics, 2024(1), 9911970.
  • Getachew, S. (2024). “Investigation of Refractive Index and Group Velocity Metal Coated Dielectric Spherical Nanocomposites”. Iranian Journal of Physics Research, 24(3), 75-87.

His academic citations are a testament to his research impact and scientific contributions.

Research Skills 🔍

Shewa possesses advanced knowledge in condensed matter physics, with strong analytical and problem-solving skills. He is proficient in a range of experimental and theoretical physics techniques. His technical expertise includes programs such as Matlab, Word, Excel, PowerPoint, OpenOffice, and Latex, and he is skilled in computer languages like Python, Fortran, and Gnuplot. He also has experience with Unix systems and software like xmgrace, showcasing his comprehensive research toolset.

Teaching Experience 📘

Shewa’s teaching experience is extensive, having taught various physics courses at the undergraduate and postgraduate levels. He designs engaging lesson plans and works closely with students to help them grasp key concepts in physics. By preparing and grading exams, assignments, and laboratory reports, he ensures students receive constructive feedback for their academic growth. His role as a mentor goes beyond the classroom, advising students on their academic and career paths and supervising their research projects.

Legacy and Future Contributions 🌱

Shewa is committed to leaving a lasting legacy in the fields of nanotechnology, material science, and condensed matter physics. His ongoing research will likely continue to make valuable contributions to the understanding of optical properties and nanocomposite materials. Looking ahead, Shewa is dedicated to mentoring the next generation of scientists and physicists, sharing his knowledge and advancing the boundaries of nanophysics and material science research. Through continuous publication and collaboration, his work is set to influence the scientific community for years to come.

Publications Top Notes

Effect of Tunable Dielectric Function of the Core on Optical Bistability in Small Spherical Metal-Dielectric Composite

  • Authors: Hawi Aboma, Shewa Getachew, Sisay Shewamare
    Journal: Ethiopian Journal of Applied Sciences
    Year: 2025

Investigation Optical Properties of ZnTe@Ag Core-Shell Spherical Nanocomposites Within Varies Dielectric Host Matrices

  • Authors: Tsegaye Atnaf, Shewa Getachew
    Journal: Advances in Materials
    Year: 2024

Investigating the Optical Bistability of Pure Spheroidal Nanoinclusions in Passive and Active Host Matrices

  • Authors: Shewa Getachew, Girma Berga
    Journal: Canadian Journal of Physics
    Year: 2024

Investigation of Refractive Index and Group Velocity Metal Coated Dielectric Spherical Nanocomposites Within Passive and Active Dielectric Cores

  • Authors: Shewa Getachew
    Journal: Iranian Journal of Physics Research (IJPR)
    Year: 2024

Effect of Tunable Dielectric Core on Optical Bistability in Cylindrical Core–Shell Nanocomposites

  • Authors: Shewa Getachew, Junjie Li
    Journal: Advances in Condensed Matter Physics
    Year: 2024

 

 

Muhammad Danish Sultan | High energy physics | Best Researcher Award

Mr. Muhammad Danish Sultan | High energy physics | Best Researcher Award

Visiting Lecturer at Emerson University | Pakistan

Muhammad Danish Sultan is an emerging researcher and educator specializing in the field of Black Hole Physics. He is currently a Visiting Lecturer at Emerson University in Multan, Pakistan, where he shares his knowledge and expertise with aspiring students. His academic journey has been marked by deep theoretical exploration into the nature of black holes, particularly focusing on their thermodynamics, Hawking evaporation, acceleration processes, and shadow images. Sultan’s research is known for its innovative approach, leading to numerous published works in high-impact journals.

👨‍🎓Profile

Scopus

Early Academic Pursuits 🎓

Sultan’s academic foundation was laid during his BS in Physics at Govt. College University Faisalabad, where he developed a strong understanding of core physics principles. He further enhanced his academic depth with a Master’s degree (MS) in Black Holes Physics from Riphah International University, where his specialization included complex phenomena like Hawking radiation and black hole accretion. Sultan also pursued an MA in Education to bridge his passion for science with teaching methodology, solidifying his commitment to both research and education.

Professional Endeavors 📚

Sultan’s professional trajectory reflects a profound commitment to education and research. He began his teaching career as a Physics Teacher at Ravi College in Mian Channu (2021-2022), where he imparted knowledge on fundamental physics concepts. In his current role as a Visiting Lecturer at Emerson University Multan, he is recognized for his ability to make complex topics in theoretical physics accessible and engaging for students. His focus on innovative teaching methods enhances students’ learning experiences, positioning him as a dynamic figure in the academic community.

Contributions and Research Focus 🔬

Sultan’s research contributions in black hole physics have been extensive and groundbreaking. He has co-authored numerous papers on subjects like the Hawking evaporation of black holes, thermodynamics of black holes, and greybody factors. His research on Kerr-Newman-Kasuya black holes and Charged Ads black holes has been instrumental in broadening the understanding of phase transitions, stability analysis, and the impact of modified gravity on black holes. His focus is primarily on understanding advanced theoretical phenomena in black hole physics, contributing valuable insights into how gravity theories affect accretion disks, quasinormal modes, and shadow images of black holes.

Impact and Influence 🌍

Sultan’s research publications have made a significant impact in the field of astrophysics, especially within high-energy astrophysics. With contributions to journals such as Physica Scripta, Nuclear Physics B, and High Energy Astrophysics, his work is cited by many in the theoretical physics community. Sultan’s studies on the optical aspects of black holes, along with the dynamic stability of charged dilatonic black holes, reflect his deep understanding and innovative approach to black hole dynamics. His work influences not only theoretical physics but also astronomical observations in terms of black hole imaging and radiation.

Academic Citations 📑

Sultan’s work has already garnered attention in the scientific community, with multiple papers published in high-impact journals and several others under submission. His publications on topics like Hawking Evaporation, Accretion Disk Dynamics, and Greybody Factors are frequently cited by researchers in the fields of general relativity and cosmology. His comprehensive studies on the thermodynamic geometry of black holes have become an essential reference for anyone working in the domain of astrophysical research.

Research Skills 🧑‍🔬

Sultan is well-versed in utilizing advanced computational tools for his research, including Mathematica, Maple, and WinEdt. His proficiency in these tools has enabled him to perform complex calculations, simulations, and data analysis, which are crucial for modeling phenomena such as black hole accretion and shadow images. His ability to engage with complex theories and translate them into computational results further strengthens his research.

Teaching Experience 📚

In addition to his research, Sultan’s teaching career has played a vital role in shaping his professional journey. He has taught undergraduate and postgraduate students at Emerson University and Ravi College, focusing on general physics, theoretical physics, and astrophysics. His teaching philosophy is centered on promoting active learning and fostering critical thinking in students. Sultan’s commitment to pedagogical development is evident through his participation in various workshops, such as Classroom Management and Computational Tools in Research.

Awards and Honors 🏅

Throughout his academic career, Sultan has been recognized for his outstanding contributions to both teaching and research. He has received Certificates of Appreciation for his participation in several prestigious workshops, including those on Nanotechnology Innovations, Classroom Management, and Computational Research Tools. These accolades reflect his dedication to enhancing both his research skills and his teaching effectiveness.

Legacy and Future Contributions 🔮

Muhammad Danish Sultan’s career is marked by his growing influence in the realm of black hole physics and astrophysics. With a solid foundation in both theoretical research and education, Sultan is poised to leave a lasting legacy in the scientific community. His future contributions are likely to push the boundaries of gravitational physics, and his work in emerging gravity theories could lead to new theoretical models and observational technologies in astrophysics. His dedication to research, teaching, and professional development ensures that he will continue to have a significant impact in the academic world, influencing both future researchers and students.

Publications Top Notes

Analysis of Hawking evaporation, shadows, and thermodynamic geometry of black holes within the Einstein SU(N) non-linear sigma model

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan, Asifa Ashraf, Awatef Abidi, Ali M. Mubaraki
    Journal: Journal of High Energy Astrophysics
    Year: 2025

Effect of Modified Gravity in the Hawking Evaporation of Charged Ads Black Hole

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan et al.
    Journal: Physica Scripta
    Year: 2023

Images and stability of black hole with cloud of strings and quintessence in EGUP framework

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan et al.
    Journal: Nuclear Physics B
    Year: 2024

Optical Aspects of Born-Infeld BTZ Black Holes in Massive Gravity

  • Authors: Muhammad Danish Sultan, Shahid Chaudhary et al.
    Journal: Physica Scripta
    Year: 2024

Greybody Factor and Accretion Disk Around Regular Black Holes in Verlinde Emergent Gravity

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan et al.
    Journal: High Energy Astrophysics
    Year: 2025

Hector Perez de-Tejada | Particle physics and cosmology | Best Faculty Award

Prof. Hector Perez de-Tejada | Particle physics and cosmology | Best Faculty Award

National University of Mexico | Mexico

Dr. Héctor Pérez-de-Tejada is an esteemed researcher and professor at the Institute of Geophysics, UNAM, Mexico. He holds a Doctorate in Space Sciences from the University of Colorado, Boulder and has been a faculty member at UNAM since 1970. As the first Ph.D. in Space Physics at UNAM, he has played a pioneering role in the development of space science research in Mexico.

👨‍🎓Profile

Scopus

Early Academic Pursuits 🎓

Dr. Pérez-de-Tejada’s academic journey began at the National University of Mexico (UNAM), where he completed his undergraduate studies at the School of Sciences. He furthered his education at the University of Colorado, where he obtained his Doctorate in Space Sciences. His early academic experiences set the foundation for his lifelong passion for planetary science and space physics, leading him to specialize in the interaction of the solar wind with planetary ionospheres.

Professional Endeavors 🌍

Since 1970, Dr. Pérez-de-Tejada has dedicated his career to research and education. He became a faculty member in Space Sciences at UNAM and also contributed to the University of Baja California in Ensenada. Throughout his career, he has been involved in cutting-edge space missions, including working as a guest investigator on NASA’s Pioneer Venus Orbiter and contributing to data analysis from the Venus Express spacecraft of the European Space Agency (ESA). His pioneering work in solar wind momentum transport and plasma dynamics has greatly advanced our understanding of planetary atmospheres.

Contributions and Research Focus 🔬

Dr. Pérez-de-Tejada has made over 100 significant publications, focusing on the interaction of solar wind with planetary ionospheres such as those of Venus, Mars, and comets. His work on the viscous transport of solar wind momentum in the Venus ionosheath and the discovery of plasma vortices in the Venus wake, over 40 years ago, have made a lasting impact in the field. He also proposed the theory of plasma channels over the magnetic poles of Venus, driven by the fluid dynamic Magnus force.

Impact and Influence 🌟

Dr. Pérez-de-Tejada’s work has had a transformative impact on the field of space science, particularly in the study of planetary ionospheres and solar wind interactions. His discoveries, such as the existence of plasma vortices and ionospheric holes on Venus, have influenced both contemporary studies and space mission design. His involvement in NASA and ESA missions reflects the international recognition of his work. He has also been a strong advocate for the development of space science infrastructure in Mexico, enhancing its visibility and global standing.

Academic Cites 📚

Dr. Pérez-de-Tejada’s publications have been widely cited in the field of space physics, with references in over 100 academic articles that build upon his theories of plasma dynamics and solar wind interaction. His work remains foundational for ongoing research on planetary atmospheres, especially with regard to Venus and Mars.

Research Skills 🧑‍🔬

Dr. Pérez-de-Tejada’s research is marked by advanced data analysis and theoretical modeling in space sciences. His extensive experience in using data from spacecraft missions such as the Pioneer Venus Orbiter and Venus Express has refined his ability to interpret complex plasma data. His research into the fluid dynamics and Magnus forces on planetary ionospheres demonstrates a deep understanding of both theoretical physics and practical spacecraft data collection.

Teaching Experience 🏫

A dedicated educator, Dr. Pérez-de-Tejada has mentored 15 students in undergraduate, Master’s, and PhD programs at UNAM and the University of Baja California. His students have gone on to make their own contributions in space science, a testament to his ability to inspire and guide the next generation of scientists and researchers. He has also taught and published two academic books, providing invaluable resources for those studying space sciences.

Awards and Honors 🏅

Dr. Pérez-de-Tejada has received numerous accolades in recognition of his work, including a celebration of his 50th anniversary of academic activities at UNAM and being distinguished at the National Workshop in Astrophysics in Mexico, which was named in his honor. His longstanding commitment to space science has been acknowledged both nationally and internationally, further solidifying his status as a leader in the field.

Legacy and Future Contributions 🌱

Dr. Pérez-de-Tejada’s legacy extends beyond his academic publications and mentorship. He was instrumental in the creation of the first ionospheric sounder in Mexico and the acquisition of a planetarium at UNAM. These contributions have helped raise the profile of space sciences in Mexico and contributed to public engagement with astronomy. His future work will likely continue to inspire young scientists while enhancing our understanding of planetary atmospheres and the broader universe.

Publications Top Notes

Wave-Particle Interactions in Astrophysical Plasmas

  • Authors: H. Pérez-De-Tejada, Héctor
    Journal: Galaxies
    Year: 2024

Measurement of plasma channels in the Venus wake

  • Authors: H. Pérez-De-Tejada, Héctor; R.N. Lundin, Rickard N.; Y. Futaana, Yoshifumi; T. Zhang, Tielong
    Journal: Icarus
    Year: 2019

Pluto’s plasma wake oriented away from the ecliptic plane

  • Authors: H. Pérez-De-Tejada, Héctor; H.J. Durand-Manterola, Héctor Javier; M. Reyes-Ruiz, Mauricio; R.N. Lundin, Rickard N.
    Journal: Icarus
    Year: 2015

A large-scale flow vortex in the Venus plasma tail and its fluid dynamic interpretation

  • Authors: R.N. Lundin, Rickard N.; S.V. Barabash, Stanislav V.; Y. Futaana, Yoshifumi; H. Pérez-De-Tejada, Héctor; J.A. Sauvaud, Jean André
    Journal: Geophysical Research Letters
    Year: 2013

Solar wind-driven plasma fluxes from the Venus ionosphere

  • Authors: H. Pérez-De-Tejada, Héctor; R.N. Lundin, Rickard N.; H.J. Durand-Manterola, Héctor Javier; J.A. Sauvaud, Jean André; M. Reyes-Ruiz, Mauricio
    Journal: Journal of Geophysical Research: Space Physics
    Year: 2013