Soumia CHQONDI | Interactions and fields | Best Researcher Award

Prof. Soumia CHQONDI | Interactions and fields | Best Researcher Award

Chouab Doukkali University | Morocco

Prof. Soumia CHQONDI is a Moroccan physicist and Assistant Professor at the Faculty of Sciences, El Jadida, affiliated with the Université Chouaib Doukkali. She is also an active member of the Laboratoire d’Innovation en Sciences, Technologies et Modélisation (ISTM). With a Doctorate in Physics obtained through a cotutelle program between Université Moulay Ismail (Morocco) and Université Pierre et Marie Curie (France), she has dedicated her academic journey to theoretical and computational studies of quantum systems. Her work on laser-atom interactions has earned her recognition through international publications, conference presentations, and collaborations across the physics community.

Profile

Scopus

Early Academic Pursuits

Soumia began her academic career with a Baccalauréat in Mathematical Sciences, followed by a DEUG in Physics and Chemistry at Université Moulay Ismail, Meknès. She pursued a Licence in Fundamental Physics (Electronics) and a Master in Applied Physics, specializing in Laser & Nanophysics. Her academic excellence led her to a doctoral program in cotutelle between two prestigious institutions in Morocco and France, where she explored quantum systems in intense laser fields. These early stages shaped her scientific rigor, developed her analytical thinking, and laid the foundation for a promising career in theoretical physics and simulation.

Professional Endeavors

Since October 2020, Prof. Chqondi serves as an Assistant Professor at the Faculty of Sciences of El Jadida, where she teaches and supervises research. From 2016 to 2020, she was a scientific researcher at the Laboratoire de Physique du Rayonnement et des Interactions Laser-Matière in Meknès, where she conducted numerical simulations of time-dependent atomic systems. Her career began in secondary education, teaching computer science from 2006 to 2019. Her multidisciplinary expertise, spanning informatics, applied physics, and quantum simulations, reflects a commitment to both pedagogical innovation and scientific advancement within and beyond the university environment.

Contributions and Research Focus

Prof. Chqondi’s research focuses on theoretical atomic physics, particularly laser-matter interactions, quantum ionization dynamics, and photoelectron angular distributions in atoms exposed to two-color and high-frequency laser fields. She has co-authored 8+ peer-reviewed articles, contributed to international book chapters, and presented at numerous conferences. Her work bridges fundamental quantum mechanics with advanced numerical modeling, offering insights into ultrafast electronic processes and photoionization phenomena. Using TDSE (time-dependent Schrödinger equation) and Floquet theory, she investigates non-linear laser interactions, essential for the development of next-generation optical technologies and quantum-based innovations.

Impact and Influence

Prof. Chqondi’s research has contributed to a deeper understanding of quantum systems in strong laser fields, impacting both theoretical frameworks and simulation techniques in laser physics. Her work has been featured in indexed journals such as Atoms, Modern Physics Letters A, and Turkish Journal of Physics. She collaborates with national and international scholars, notably Prof. Abdelkader Makhoute, enhancing scientific diplomacy between Moroccan and European institutions. Through her roles in teaching, publication, and mentoring, she inspires emerging researchers, helping bridge the gap between classical education and cutting-edge physics research in the Arab and African academic communities.

Academic Citations

Prof. Chqondi’s scientific publications are cited in peer-reviewed international journals, reflecting her contribution to specialized fields such as photoionization, laser-assisted electron dynamics, and numerical physics simulations. While exact citation metrics (e.g., h-index) are not provided, her consistent presence in indexed and impact-factor journals, including Nonlinear Dynamics and Systems Theory, underscores her academic credibility. Her co-authored articles are frequently referenced in studies exploring quantum dynamics, laser spectroscopy, and semi-classical theories. As her work gains further recognition and is integrated into broader research, its citation count and visibility are likely to grow substantially.

Research Skills

Prof. Chqondi demonstrates strong computational and theoretical skills. She is proficient in Fortran, Maple, LaTeX, and OriginPro, vital tools in quantum simulation and data analysis. Her research involves solving TDSE, modeling photoelectron spectra, and applying Floquet theory to atomic systems. She is skilled in Microsoft Office, Linux/Windows, and has experience with statistical analysis using Excel. Her scientific rigor is matched with literature review expertise, scientific writing, and effective use of academic databases. She also incorporates modern tools like Urkund for plagiarism detection, ensuring academic integrity in research and publishing.

Teaching Experience

Prof. Chqondi has over 15 years of experience in education, from secondary teaching in computer science to university-level physics instruction. Since 2020, she has taught undergraduate and graduate courses at Université Chouaib Doukkali, focusing on quantum physics, simulation techniques, and scientific computing. She also contributes to the mentorship of research students, supporting project development and thesis supervision. Her approach combines foundational theory with modern simulation practices, bridging gaps between classroom learning and applied physics research. She also integrates digital tools and interactive learning environments to enhance student engagement and scientific curiosity.

Awards and Honors

Although specific awards or fellowships are not listed, Prof. Chqondi’s selection for a cotutelle Ph.D. program between Morocco and France indicates early recognition of her potential. Her invited participation in prestigious international conferences and summer schools, such as in Paris and Tangier, highlights her academic merit. Her paper presentations at major events like SPIn2022 and Moroccan ADM 2023 also underline her standing in the field. Her contributions have earned her respect among scientific peers, and she remains a strong candidate for academic distinctions such as the Best Researcher Award, based on her consistent output and specialization.

Legacy and Future Contributions

Prof. Chqondi is poised to become a leading voice in theoretical physics and computational laser-matter interaction studies in Morocco and the MENA region. With a foundation in quantum dynamics and a commitment to scientific integrity, she continues to mentor students, publish impactful research, and build interdisciplinary collaborations. Her future work may extend into quantum control systems, ultrafast optics, or machine learning in physics simulations. As an educator and researcher, she is contributing to a new generation of Moroccan physicists, and her legacy will likely include pioneering simulation techniques and advancing quantum education in developing contexts.

Publications Top Notes

Controlling the Ionization Dynamics of Argon Induced by Intense Laser Fields: From the Infrared Regime to the Two-Color Configuration

  • Authors: Soumia Chqondi, Souhaila Chaddou, Ahmad Laghdas, Abdelkader Makhoute
    Journal: Atoms
    Year: 2025

Photoelectron angular distributions for photoionization of argon by two-color fields

  • Authors: Soumia Chqondi, Souhaila Chaddou, Abdelkader Makhoute
    Journal: Modern Physics Letters A
    Year: 2024

A New Feedback Control for Exponential and Strong Stability of Semi-Linear Systems with General Decay Estimates

  • Authors: M. Chqondi, S. Chqondi, K. Tigma, Y. Akdim
    Journal: Nonlinear Dynamics and Systems Theory
    Year: 2024

Theoretical description of the two-color photoelectron spectra process of hydrogen: comparison between TDSE calculation and Kroll and Watson approach

  • Authors: Souhaila Chaddou, Soumia Chqondi, Abdelmalek Taoutioui, Abdelkader Makhoute
    Journal: Turkish Journal of Physics
    Year: 2019

Numerical simulation of photoionization processes of the atomic hydrogen by a Ti: Saphir laser

  • Authors: S. Chaddou, S. Chqondi, A. Makhoute
    Journal: International Journal of Photonics and Optical Technology
    Year: 2017

 

 

Abhisek Dutta | Interactions and fields | Young Scientist Award

Mr. Abhisek Dutta | Interactions and fields | Young Scientist Award 

Research Student at Jadavpur University, India

Abhisek Dutta is a Post-Graduate in Physics from Jadavpur University, India, specializing in Theoretical Astrophysics, Gravitation, and Computational Astrophysics. With research interests in Dark Matter Theory, Early Universe, and high-energy astrophysics, Abhisek has made significant contributions to astrophysical theories such as quark stars and traversable wormholes. His work is published in leading journals like the European Physical Journal C and Physics of the Dark Universe. Abhisek also excels in computational tools like Mathematica, LaTeX, and C++, and shares his expertise through his role as an Advanced Physics Expert at CHEGG. A dedicated high school physics teacher, he brings real-world research into the classroom and inspires future scientists.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Abhisek’s academic journey began with a B.Sc. in Physics from the University of Calcutta, where he ranked 2nd in his class. He then pursued an M.Sc. in Physics from Jadavpur University, one of India’s top-ranked institutions, where he scored 80.3%. His specialization in High Energy Astrophysics, X-ray Crystallography, and Mathematics laid a solid foundation for his future research. His academic excellence earned him top ranks in School Examinations with outstanding performances in WBBSE and WBCHSE. Abhisek also strengthened his understanding of dark matter, cosmology, and the early universe through verified online courses from global institutions such as the University of Tokyo and the California Institute of Technology.

Professional Endeavors 💼

Abhisek Dutta has a multifaceted professional career that extends beyond academia. He works as a High School Physics Teacher at Sarada Educare School in Kolkata, where he designs and delivers lessons on K-12 Physics, conducts laboratory experiments, and assesses student performance. Abhisek also serves as an Advanced Physics Expert for CHEGG, providing online academic assistance to students worldwide. His academic pursuits are complemented by his passion for astrophotography, which aligns with his professional interests in astrophysics and the visual representation of cosmic phenomena. This diverse experience allows him to bridge the gap between theory and practice, inspiring young minds while contributing to cutting-edge research.

Contributions and Research Focus 🔬

Abhisek’s research contributions are focused on Theoretical Astrophysics, particularly in Gravitation, Dark Matter Theory, and the Early Universe. He has conducted groundbreaking work on quark stars in 4-dimensional Einstein-Gauss-Bonnet gravity and studied traversable wormholes with weak gravitational lensing in f(R,T) gravity. Additionally, his research on the equation of state of compact stellar bodies is currently under review. Abhisek is dedicated to advancing our understanding of complex astrophysical phenomena, such as black hole spin-orbit resonance and quasi-periodic oscillations in X-ray binaries. His work integrates both theoretical models and observational data, which is crucial for the continued progress of the field.

Impact and Influence 🌌

Abhisek Dutta’s research has significantly influenced astrophysics by advancing our understanding of high-energy phenomena like dark matter, gravitational theories, and cosmological evolution. His work on quark stars and traversable wormholes has provided fresh perspectives on the fundamental structure of the universe and gravitational anomalies. Abhisek’s publications in European Physical Journal C and Physics of the Dark Universe are widely cited, contributing to the ongoing discourse in astrophysical communities. His efforts to bridge theoretical models with observational data have solidified his role as a key contributor to the global astrophysics community.

Academic Cites 📚

Abhisek’s scholarly work has garnered recognition from the academic community, with multiple publications in prestigious journals, including the European Physical Journal C, Physics of the Dark Universe, and Universe (MDPI). His groundbreaking research on weak deflection angles in Einstein-Cartan Traversable Wormholes and weak gravitational lensing in f(R,T) gravity is already making waves. These studies are widely cited by fellow astrophysicists, confirming Abhisek’s status as an emerging thought leader in the field. His research is instrumental in shaping future studies on black holes, gravitational waves, and quantum cosmology.

Research Skills 💻

Abhisek Dutta is highly skilled in a wide range of computational tools and programming languages such as Mathematica, LaTeX, Matlab, FORTRAN, C++, and C, which are integral to his research methodology. His proficiency in these tools allows him to model complex astrophysical systems, simulate gravitational interactions, and analyze large data sets. Additionally, Abhisek possesses strong mathematical modeling and statistical analysis abilities, which enable him to formulate and solve astrophysical equations with precision. His computational expertise is essential for advancing theoretical astrophysics and contributing to the global understanding of gravitational phenomena and dark matter.

Teaching Experience 🍎

Abhisek has been a dedicated high school physics teacher at Sarada Educare School since 2017, where he has demonstrated a strong commitment to educating the next generation of scientists. His expertise in teaching complex physical concepts allows him to engage students with hands-on laboratory work, practical applications, and theoretical models. Abhisek’s approach emphasizes conceptual understanding and problem-solving skills, providing students with a solid foundation in physics. His teaching experience extends to his role as an Advanced Physics Expert at CHEGG, where he guides university students through challenging problems in physics and helps them achieve academic success.

Awards and Honors 🏆

Abhisek’s academic excellence is reflected in his numerous awards and honors. He secured the 2nd Rank during his Undergraduate (B.Sc.) studies in Physics at the University of Calcutta. He also achieved the 2nd highest marks during his Post-graduation (M.Sc.) from Jadavpur University, a top-ranked institution in India. Abhisek ranked among the top 1% in WBBSE (School Final) and top 2% in WBCHSE (High School). His outstanding achievements in both academic exams and research underscore his dedication to excellence in the field of physics. These accolades highlight his strong academic foundation and commitment to the advancement of scientific knowledge.

Legacy and Future Contributions 🌱

Abhisek Dutta’s legacy is being shaped by his groundbreaking research and dedication to teaching. His work on quark stars, gravitational theories, and dark matter continues to make significant strides in theoretical astrophysics. As a passionate educator, Abhisek’s future contributions will likely inspire generations of physicists who will carry forward his research and ideas. His vision of advancing cosmic exploration and unraveling the mysteries of dark energy and the early universe is set to leave a lasting impact on the field. Abhisek’s future endeavors will not only shape academic discourse but also contribute to the global scientific community’s understanding of the universe’s fundamental workings.

Publications Top Notes

Traversable wormholes with weak gravitational lensing effect in f(R, T) gravity

  • Authors: N. Sarkar, S. Sarkar, A. Bouzenada, A. Dutta, M. Sarkar, F. Rahaman
    Journal: Physics of the Dark Universe
    Year: 2024

Quark stars in 4-dimensional Einstein–Gauss–Bonnet gravity

  • Authors: K. N. Singh, S. K. Maurya, A. Dutta, F. Rahaman, S. Aktar
    Journal: The European Physical Journal C
    Year: 2021

Weak deflection angle by the Einstein–Cartan traversable wormhole using Gauss–Bonnet theorem with time delay

  • Authors: S. Sarkar, N. Sarkar, A. Dutta, F. Rahaman
    Journal: Universe
    Year: 2024

Quark stars in 4-dimensional Einstein-Gauss-Bonnet gravity

  • Authors: K. N. Singh, S. K. Maurya, A. Dutta, F. Rahaman, S. Aktar
    Journal: arXiv e-prints
    Year: 2021