Shewa Getachew | High energy physics | Editorial Board Member

Mr. Shewa Getachew | High energy physics | Editorial Board Member

Lecturer at Wolkite University | Ethiopia

Shewa Getachew Mamo is a dedicated Physics Lecturer and researcher with a specialized focus on optical properties of nanocomposites, material science, refractive index, and group velocity. Passionate about advancing scientific knowledge, he is committed to both academic excellence and innovative research in the realm of condensed matter physics. His expertise extends to investigating local field enhancements, optical properties of nanostructures, and exploring nanoparticle-based materials and geometries.

πŸ‘¨β€πŸŽ“Profile

ORCID

Early Academic Pursuits πŸŽ“

Shewa’s academic journey began at Wolkite University, where he earned his Bachelor’s degree in Physics (2016-2019) and later pursued a Master’s degree in Condensed Matter Physics (2022-2023). Throughout his education, he developed a strong foundation in experimental and theoretical physics, which propelled him into a career of teaching and research in the field.

Professional Endeavors πŸ’Ό

Currently, Shewa serves as a Physics Teacher at Wolkite University (since December 2023). In this role, he is responsible for preparing and presenting undergraduate and sometimes postgraduate courses in various areas of physics, including mechanics, electromagnetism, thermodynamics, quantum mechanics, and material science. He plays a vital role in designing curricula, developing lesson plans, and selecting relevant textbooks to ensure effective learning outcomes. His academic influence extends to advising students on academic matters and guiding them through research projects.

Contributions and Research Focus πŸ”¬

Shewa’s research focus is primarily on the optical properties of core-shell spherical nanocomposites and local field enhancements. His research aims to explore the interaction between optical fields and nanocomposites, as well as investigating the influence of depolarization on the local field enhancement factor in passive and active composites with pure metal spheroidal nanoinclusions. One of his notable research areas includes optical bistability in nanoparticle composites and the role of tunable dielectric cores in cylindrical core-shell nanocomposites.

Impact and Influence 🌍

Shewa’s research has led to significant contributions to the field of material science and nanotechnology, specifically in understanding the optical properties of nanostructured materials. His findings have been widely discussed in the scientific community, with numerous publications in prominent journals. He is committed to staying updated with the latest advancements in condensed matter physics and nanotechnology, consistently striving to push the boundaries of existing scientific knowledge.

Academic Cites πŸ“š

Shewa’s work has been widely cited, with his contributions being recognized across several prestigious journals. His publications include studies such as:

  • Tsegaye, A., & Getachew, S. (2024). β€œInvestigation Optical Properties of ZnTe@Ag Core-Shell Spherical Nanocomposites Within Varies Dielectric Host Matrices”. Advances in Materials, 13(4), 80-91.
  • Getachew, S. (2024). β€œEffect of Tunable Dielectric Core on Optical Bistability in Cylindrical Core-Shell Nanocomposites”. Advances in Condensed Matter Physics, 2024(1), 9911970.
  • Getachew, S. (2024). β€œInvestigation of Refractive Index and Group Velocity Metal Coated Dielectric Spherical Nanocomposites”. Iranian Journal of Physics Research, 24(3), 75-87.

His academic citations are a testament to his research impact and scientific contributions.

Research Skills πŸ”

Shewa possesses advanced knowledge in condensed matter physics, with strong analytical and problem-solving skills. He is proficient in a range of experimental and theoretical physics techniques. His technical expertise includes programs such as Matlab, Word, Excel, PowerPoint, OpenOffice, and Latex, and he is skilled in computer languages like Python, Fortran, and Gnuplot. He also has experience with Unix systems and software like xmgrace, showcasing his comprehensive research toolset.

Teaching Experience πŸ“˜

Shewa’s teaching experience is extensive, having taught various physics courses at the undergraduate and postgraduate levels. He designs engaging lesson plans and works closely with students to help them grasp key concepts in physics. By preparing and grading exams, assignments, and laboratory reports, he ensures students receive constructive feedback for their academic growth. His role as a mentor goes beyond the classroom, advising students on their academic and career paths and supervising their research projects.

Legacy and Future Contributions 🌱

Shewa is committed to leaving a lasting legacy in the fields of nanotechnology, material science, and condensed matter physics. His ongoing research will likely continue to make valuable contributions to the understanding of optical properties and nanocomposite materials. Looking ahead, Shewa is dedicated to mentoring the next generation of scientists and physicists, sharing his knowledge and advancing the boundaries of nanophysics and material science research. Through continuous publication and collaboration, his work is set to influence the scientific community for years to come.

Publications Top Notes

Effect of Tunable Dielectric Function of the Core on Optical Bistability in Small Spherical Metal-Dielectric Composite

  • Authors: Hawi Aboma, Shewa Getachew, Sisay Shewamare
    Journal: Ethiopian Journal of Applied Sciences
    Year: 2025

Investigation Optical Properties of ZnTe@Ag Core-Shell Spherical Nanocomposites Within Varies Dielectric Host Matrices

  • Authors: Tsegaye Atnaf, Shewa Getachew
    Journal: Advances in Materials
    Year: 2024

Investigating the Optical Bistability of Pure Spheroidal Nanoinclusions in Passive and Active Host Matrices

  • Authors: Shewa Getachew, Girma Berga
    Journal: Canadian Journal of Physics
    Year: 2024

Investigation of Refractive Index and Group Velocity Metal Coated Dielectric Spherical Nanocomposites Within Passive and Active Dielectric Cores

  • Authors: Shewa Getachew
    Journal: Iranian Journal of Physics Research (IJPR)
    Year: 2024

Effect of Tunable Dielectric Core on Optical Bistability in Cylindrical Core–Shell Nanocomposites

  • Authors: Shewa Getachew, Junjie Li
    Journal: Advances in Condensed Matter Physics
    Year: 2024

 

 

Ranjita Kumari Mohapatra | High energy physics | Best Researcher Award

Assist. Prof. Dr. Ranjita Kumari Mohapatra | High energy physics | Best Researcher Award

Rajdhani College Bhubaneswar | India

Dr. Ranjita Kumari Mohapatra is an Assistant Professor at Rajdhani College in Bhubaneswar, Odisha, specializing in the field of Physics. Her academic journey spans a rich history of rigorous research, teaching, and contributions to the scientific community. With over a decade of experience, Dr. Mohapatra has made significant strides in the realm of relativistic heavy-ion collisions, strongly interacting matter, and transport coefficients.

πŸ‘¨β€πŸŽ“Profile

Google scholar

Scopus

Early Academic Pursuits πŸŽ“

Dr. Mohapatra’s academic foundation began with her M.Sc. in Physics from Utkal University (2004), followed by a Post-M.Sc. program at the Institute of Physics, Bhubaneswar (2005-2006). Her Ph.D. research, titled Investigating Formation and Evolution of Z(3) Walls and Flow Anisotropies in Relativistic Heavy Ion Collisions, was completed at the Institute of Physics in 2012 under the guidance of Prof. Ajit M. Srivastava.

Professional Endeavors 🏒

Dr. Mohapatra’s career trajectory includes post-doctoral fellowships at prestigious institutions such as the Physical Research Laboratory (2012-2014), IIT Bombay (2018-2019), and Banki College (2019-2023). Since February 2023, she has been serving as an Assistant Professor in the Department of Physics at Rajdhani College. Over the years, she has been involved in cutting-edge research and has become a respected educator, imparting knowledge to both undergraduate and postgraduate students.

Contributions and Research Focus πŸ”¬

Dr. Mohapatra’s research focuses on the equation of state of strongly interacting matter, conserved charge fluctuations, and calculation of transport coefficients in relativistic heavy ion collisions. She is currently spearheading an ongoing project funded by the OURIIP seed fund with a grant of Rs. 402,000/-. Her earlier works, such as Z(3) walls and the acoustic oscillations in heavy-ion collisions, have significantly impacted the understanding of QGP (Quark-Gluon Plasma) dynamics and other key phenomena in nuclear physics.

Impact and Influence 🌍

Dr. Mohapatra’s contributions to high-energy nuclear physics are invaluable. Her work on flow anisotropies and magnetic fields in relativistic heavy-ion collisions, as well as her studies on quark-hadron transitions, have had a profound influence on the field, advancing the understanding of strongly interacting matter. Her research continues to shape the future of QCD (Quantum Chromodynamics) and phase transitions in the early universe.

Academic Citations πŸ“‘

Dr. Mohapatra has authored numerous influential publications, with more than 19 research papers in renowned journals such as Phys. Rev. C, Phys. Rev. D, and Nucl. Phys. A. Key publications, like her work on inverse magnetic catalysis and transport coefficients, have been cited widely and contribute to the ongoing discourse in nuclear physics. Her work continues to inspire researchers in the fields of quantum chromodynamics and particle physics.

Research Skills 🧠

Dr. Mohapatra’s research expertise includes relativistic hydrodynamics, QCD phase diagram, magnetic catalysis, transport coefficients, and fluctuations in heavy-ion collisions. She has developed key models for understanding conserved charge fluctuations and the influence of magnetic fields on hadron resonance gas models, with significant applications in astrophysics and nuclear physics. Her analytical and computational skills are essential in advancing the field.

Teaching Experience πŸ“š

Dr. Mohapatra’s teaching career spans several prestigious institutions. She has served as a tutor and teaching assistant for undergraduate and postgraduate courses at IIT Bombay, where she taught subjects like nuclear theory and BTech lab courses. At Banki College and Rajdhani College, she has taught undergraduate students in Physics. With a strong pedagogical approach, she instills deep knowledge of nuclear physics and high-energy physics among her students.

Awards and Honors πŸ…

Dr. Mohapatra’s scholarly achievements have earned her significant recognition. She was awarded the OURIIP Seed Fund Research Grant (2021) for her innovative research on strongly interacting matter. Her work has also been acknowledged at national and international conferences, where she has presented her research and contributed to advancing the understanding of heavy-ion collisions.

Legacy and Future Contributions 🌱

As an educator and researcher, Dr. Mohapatra continues to build a lasting legacy through her research contributions and teaching practices. Her future goals include furthering the study of QCD matter, phase transitions, and transport coefficients. Dr. Mohapatra envisions her research aiding in precision measurements and experimental predictions that could revolutionize the understanding of nuclear matter in extreme conditions.

Publications Top Notes

QCD phase diagram and the finite volume fireball: A model study
  • Authors: Shaikh, A., Mohapatra, R.K., Datta, S.
    Journal: Nuclear Physics A
    Year: 2025
Finite Volume Effects on the QCD Chiral Phase Transition Using NJL Model
  • Authors: Shaikh, A., Mohapatra, R.K., Datta, S.
    Journal: Springer Proceedings in Physics
    Year: 2024
Axion mass in a hot QCD plasma
  • Authors: Das, A., Abhishek, A., Mohapatra, R.K., Mishra, H.
    Journal: Proceedings of Science
    Year: 2023
Diffusion matrix associated with the diffusion processes of multiple conserved charges in a hot and dense hadronic matter
  • Authors: Das, A., Mishra, H., Mohapatra, R.K.
    Journal: Physical Review D
    Year: 2022
In Medium Properties of Axion Within a Polyakov Loop Enhanced Nambu-Jona-Lasinio Model
  • Authors: Mohapatra, R.K., Abhishek, A., Das, A., Mishra, H.
    Journal: Springer Proceedings in Physics
    Year: 2022

 

 

 

Qiqi Li | High Energy Physics

Ms.Β  Qiqi Li: Leading Researcher in High entropy ceramics

Ph.D. Student at School of Civil and Engineering Chongqing University, China

Congratulations, Ms. Qiqi LiΒ on winning the esteemed Best Researcher Award from ScienceFather! πŸ† Your dedication, innovative research, and scholarly contributions have truly made a significant impact in your field. Your commitment to advancing knowledge and pushing the boundaries of research is commendable. Here’s to your continued success in shaping the future of academia and making invaluable contributions to your field. Well done! 🌟

πŸ‘¨β€πŸ« Ms .Qiqi Li, an Ph.D. Student at School of Civil and Engineering Chongqing University, China, stands as a distinguished academic and researcher in the domain of High energy physics. Holding a PhD in High Energy Physics and Computational Science from School of Civil and Engineering Chongqing University, their professional journey exemplifies dedication and expertise. πŸ“š. πŸŒπŸ‘¨β€πŸŽ“

Professional Profiles:

Scopus Profile

ResearchGate Profile

Areas of Specialization

High Energy Physics and Computational Science

Education:

Ph.D. Student: Chongqing University (2020 – Present),

Competition and Rewards:

Excellent Graduate: Xi’an University of Architecture and Technology (2019),Β  First-Class Academic Scholarship: Xi’an University of Architecture and Technology (2018)

Research Field:

During my master’s degree, she focused on studying the static performance of RC components with ECC jacket. Notably:

Published 2 Chinese EI papers Completed 1 SCI paper in collaboration with a research group member Presented at the 17th National Fiber Concrete Academic Conference In her Ph.D. journey, she research shifted towards structures for wind power engineering, involving: Designing the foundation of a pre-stressed concrete-filled steel tube lattice tower Optimizing the reinforcement quantity of a gravity foundation Proposing and calculating the reinforcement scheme of onshore wind power foundations.

Research Achievements:

Published 2 SCI papers related to wind power engineering, Published 1 EI Chinese paper in the same field, Currently, 2 SCI papers are under review

Peer Reviewer & Academic Engagements

Citations by : 4

h-index: 1

Publications: 5 documents indexed in Scopus.

Publications (TOP NOTED)

Li Qiqi, Zhao Yuting, Jin Kaiyuan, Wang Yuhang, Gao Yuan. Constitutive model of lightweight
aggregate concrete confined by circular steel tube. Eng. Struct. 2023; 276(7): 115355.

Wang Yuhang, Mao Jie, Zhou Xuhong, Li Qiqi. Static behavior of multi-planar CFST chord-CHS
brace TT joints in Structures. Structures 2023, 58: 105554. (Corresponding Author)

Deng Mingke, Li Qqiqi, Liu Haibo, Jing Wubin. Experimental study on seismic behavior and shear
strength calculation of high ductile concrete low-rise shear wall. Eng Mech 2020; 37(01): 63-72. [in
Chinese]

Deng Mingke, Li Qiqi, Ma Fudong, Huang Zheng. Experimental study on the shear behavior of RC
beams reinforced by high ductile concrete. Eng Mech 2020; 37(5): 55-63. [in Chinese]

Deng Mingke, Zhang Yangxi, Li Qiqi. Shear strengthening of RC short columns with ECC jacket:
Cyclic behavior tests. Eng Struct 2018; 160: 535-545.

Wang Yuhang, Zhao Yuting, Zhou Xuhong, Li Qiqi. Uniaxial compression test and bearing capacity
calculation of round steel tubed ceramsite concrete short column. Industrial Construction 2022,
52(1):7. (Corresponding Author) [in Chinese]