Durgesh Tripathi | High-Energy Astrophysics | Best Researcher Award

Prof. Dr. Durgesh Tripathi | High-Energy Astrophysics | Best Researcher Award

Senior Professor at Inter-University Centre for Astronomy and Astrophysics, Pune | India

Prof. Dr. Durgesh Tripathi is a distinguished solar physicist and a Senior Professor at the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India. With an illustrious academic journey spanning over two decades and contributions that have reshaped our understanding of the Sun, he stands as a globally recognized leader in the field of solar atmospheric physics. He is currently the Principal Investigator of the Solar Ultraviolet Imaging Telescope (SUIT) aboard Aditya-L1, India’s first solar mission by ISRO.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📘 Early Academic Pursuits

Born with a curiosity for the cosmos, Dr. Tripathi earned his M.Sc. in Physics with specialization in Astrophysics from D.D.U. Gorakhpur University, where he secured a University Gold Medal. He then pursued a Doctor of Natural Sciences (Dr. rer. Nat.) from the Max-Planck Institute for Solar System Research, Germany, affiliated with Georg-August Universität Göttingen. His doctoral thesis focused on “EUV and Coronagraphic Observations of Coronal Mass Ejections“, laying the groundwork for his lifelong pursuit in solar research.

🧑‍🏫 Professional Endeavors

Dr. Tripathi’s professional journey is marked by prestigious positions and international fellowships. He has held postdoctoral roles at institutions like the University of Cambridge (DAMTP), University College London (MSSL), and Max-Planck Institute, Germany. At IUCAA, he advanced through the ranks from Assistant Professor to Senior Professor, contributing significantly in research, teaching, and leadership.

🔭 Contributions and Research Focus

Prof. Dr. Durgesh Tripathi has made pioneering contributions to the coupling and dynamics of the solar atmosphere, especially in coronal heating, solar wind origins, and magnetic reconnection. His work includes impulsive heating in the quiet Sun using machine learning on 300,000 light curves, studies of Ellerman Bombs via 2D MHD simulations, and insights into solar wind switchbacks, redshift anomalies, and temperature-dependent coronal fuzziness. His leadership in Aditya-L1 and the SUIT telescope represents a historic milestone in Indian space science.

🌍 Impact and Influence

Dr. Tripathi’s influence spans continents and disciplines. He has led and collaborated in Indo-German, Indo-US, and Indo-French research programs, driving international cooperation in space science. His findings have influenced not only academic research but also space weather forecasting, vital for satellite operations and communication systems on Earth.

📚 Academic Citations

While specific citation metrics are not listed here, his consistent presence in top-tier journals, editorial board memberships (e.g., Proceedings of the Royal Society A, RASTI), and leadership in missions like Aditya-L1 speak volumes about his scholarly impact and peer recognition. His work is widely cited in the domains of solar spectroscopy, coronal heating, and magnetohydrodynamics.

🛠️ Research Skills

Dr. Durgesh Tripathi possesses a unique blend of theoretical depth and hands-on expertise in both computational and observational astrophysics. His skill set spans UV & EUV spectroscopy, machine learning in astrophysics, multi-wavelength data analysis, magnetohydrodynamic (MHD) simulations, and space instrumentation development. This fusion of classical and modern techniques empowers him to address complex astrophysical problems with innovation, making him a leader in cutting-edge solar research and instrumental in advancing our understanding of the Sun.

👨‍🏫 Teaching Experience

A passionate educator, he has taught core astrophysics courses such as Stellar Structure and Evolution, Electrodynamics and Radiative Processes, and Statistical Techniques at IUCAA and Pune University. His long-term involvement in graduate education reflects his commitment to mentoring the next generation of astrophysicists.

🏅 Awards and Honors

Prof. Durgesh Tripathi has received prestigious national and international accolades, reflecting his scientific excellence and global reputation. Notable honors include the Young Career Award by the Asia Pacific Solar Physics Meeting (2024), the BUTI Foundation Award (2017), and a Group Achievement Award from the Romanian Academy of Science. He has held visiting professorships in Japan, UK, USA, and Germany, and holds life and associate memberships at esteemed institutions like Clare Hall, St. Edmunds College, and the IAU.

🧬 Legacy and Future Contributions

Through his leadership in Aditya-L1 and interdisciplinary solar research, Dr. Durgesh Tripathi is laying the groundwork for future space missions and advanced solar exploration. His work in instrument design, fundamental solar physics, and academic mentorship is shaping a lasting legacy in both Indian and global astrophysics. Looking ahead, his focus includes the integration of AI-driven tools, deeper investigation of the Sun-Earth climate connection, and the expansion of India’s role in space-based solar observations.

Publications Top Notes

Near- and Mid-ultraviolet Observations of X-6.3 Flare on 2024 February 22 Recorded by the Solar Ultraviolet Imaging Telescope on board Aditya-L1

  • Authors: S. Roy, Durgesh Tripathi, Sreejith S. Padinhatteeri, Dibyendu K. Nandy, Dipankar Banerjee
    Journal: Astrophysical Journal Letters
    Year: 2025

The Solar Ultraviolet Imaging Telescope on Board Aditya-L1

  • Authors: Durgesh Tripathi, Anamparambu N. Ramaprakash, Sreejith S. Padinhatteeri, D. R. Veeresha, R. Venkateswaran
    Journal: Solar Physics
    Year: 2025

Science Filter Characterization of the Solar Ultraviolet Imaging Telescope (SUIT) on board Aditya-L1

  • Authors: Janmejoy Sarkar, Rushikesh Deogaonkar, Ravi Kesharwani, Netra S. Pillai, Swapnil Singh
    Journal: Experimental Astronomy
    Year: 2025

Thermodynamic Evolution of Plumes

  • Authors: Biswanath Malaker, Vishal Upendran, Durgesh Tripathi
    Journal: Astrophysical Journal
    Year: 2024

Heliophysics Great Observatories and International Cooperation in Heliophysics: An Orchestrated Framework for Scientific Advancement and Discovery

  • Authors: Laurence E. Kepko, Rumi Nakamura, Yoshifumi Saito, Spiro K. Antiochos, Chi Wang
    Journal: Advances in Space Research
    Year: 2024

Song He | High energy physics | Best Researcher Award

Mr. Song He | High energy physics | Best Researcher Award

Ph.D. student at Huazhong University of Science and Technology | China

Song He is currently a Ph.D. student at Huazhong University of Science and Technology (HUST), specializing in novel radiation detectors and imaging techniques. He has contributed extensively to high-impact journals in the fields of material science and electronics, with innovative research in scintillator development. His work has led to groundbreaking discoveries in enhancing X-ray imaging and fast neutron imaging resolution.

👨‍🎓Profile

Scopus 

ORCID

Early Academic Pursuits 🎓

Song He’s academic journey began with a Bachelor of Engineering in Materials Science and Engineering from China University of Mining and Technology (2015-2019). He continued with a Master of Engineering in Materials and Physics from the same university (2019-2022). Currently, he is pursuing a Ph.D. in Electronic Science and Technology at HUST since 2022. His early education laid a strong foundation for his innovative approach to radiation detection and imaging technology.

Professional Endeavors 💼

Throughout his career, Song He has primarily focused on developing novel radiation detectors and imaging technologies. His work emphasizes improving the performance of scintillators for better X-ray and neutron imaging. He has filed several patents related to his inventions, demonstrating his commitment to transformative research in radiation detection. Despite limited professional collaborations at this stage, his independent contributions have been highly impactful in the scientific community.

Contributions and Research Focus 🔬

Song He’s research primarily revolves around novel radiation detectors and scintillator technologies. In particular, he has developed a new class of scintillators that overcome traditional limitations by using hot exciton molecules (TPE-4Br) and conjugated polymers (PVT) to enhance performance. His contributions have led to breakthroughs in X-ray imaging and fast neutron imaging resolution, significantly advancing the field of radiation detection.

Impact and Influence 🌍

Song He’s work is paving the way for high-resolution imaging technologies that can have a significant impact in fields such as medical diagnostics, nuclear physics, and security imaging. His innovative approaches are influencing both academic research and practical applications. His recent paper in Advanced Functional Materials (DOI: 10.1002/adfm.202503688) received recognition for offering a new solution to long-standing challenges in the radiation detection field.

Academic Citations 📑

Although Song He’s citation index is not formally listed, his work is published in top-tier journals like Advanced Functional Materials, Inorganic Chemistry, Advanced Materials, and The Journal of Physical Chemistry C. The high impact of his research is evident in the citations of his publications, showing their relevance and influence in the scientific community.

Research Skills 🧠

Song He demonstrates exceptional skills in materials science, physics, and electronic technology. His ability to synthesize innovative materials and develop advanced radiation detectors showcases his technical expertise. Additionally, he has practical skills in scintillator synthesis, polymer chemistry, and in-situ polymerization. His experimental design and analytical techniques allow for high-precision imaging, which is crucial for the future of radiation detection.

Awards and Honors 🏅

Currently, Song He has not reported receiving formal awards or honors. However, the significance of his innovative research and published work in high-impact journals positions him as a rising star in his field. His patent applications and scientific contributions hint at a promising future where such recognitions are likely.

Legacy and Future Contributions 🔮

With his cutting-edge research in radiation detectors and imaging technologies, Song He is poised to make long-lasting contributions to both academic and industry sectors. His future work holds the potential for further advancements in medical imaging, nuclear research, and security applications, with his innovative materials providing solutions to longstanding challenges. As his career progresses, Song He is expected to become a significant figure in radiation detection technologies, with lasting impact on both science and society.

Publications Top Notes

High‐Performing Direct X‐Ray Detection Made of One‐Dimensional Perovskite‐Like (TMHD)SbBr₅ Single Crystal With Anisotropic Response

  • Authors: Guangya Zheng, Haodi Wu, Song He, Hanchen Li, Zhiwu Dong, Tong Jin, Jincong Pang, Rachid Masrour, Zhiping Zheng, Guangda Niu et al.
    Journal: Small
    Year: 2025

Hot Exciton‐Based Plastic Scintillator Engineered for Efficient Fast Neutron Detection and Imaging

  • Authors: Song He, Pengying Wan, Hanchen Li, Zizhen Bao, Xinjie Sui, Guangya Zheng, Hang Yin, Jincong Pang, Tong Jin, Shunsheng Yuan et al.
    Journal: Advanced Functional Materials
    Year: 2025

Close‐to‐Equilibrium Crystallization for Large‐Scale and High‐Quality Perovskite Single Crystals

  • Authors: Hang Yin, Mingquan Liao, Yuanpeng Shi, Zhiqiang Liu, Hanchen Li, Song He, Zhiping Zheng, Ling Xu, Jiang Tang, Guangda Niu
    Journal: Advanced Materials
    Year: 2025

BiSBr, an Anisotropic One-Dimensional Chalcohalide Used for Radiographic Detection

  • Authors: Yunmeng Liang, Pang Jincong, Zhang Qingli, He Song, Xu Ling, Luo Wei, Zhiping Zheng, Guangda Niu
    Journal: The Journal of Physical Chemistry C
    Year: 2024

Remarkable Improvement of Thermoelectric Performance in Ga and Te Cointroduced Cu₃SnS₄

  • Authors: Song He, 勇 罗, Liangliang Xu, Yue Wang, Zhongkang Han, Xie Li, Jiaolin Cui
    Journal: Inorganic Chemistry
    Year: 2021