Muhammad Danish Sultan | High energy physics | Best Researcher Award

Mr. Muhammad Danish Sultan | High energy physics | Best Researcher Award

Visiting Lecturer at Emerson University | Pakistan

Muhammad Danish Sultan is an emerging researcher and educator specializing in the field of Black Hole Physics. He is currently a Visiting Lecturer at Emerson University in Multan, Pakistan, where he shares his knowledge and expertise with aspiring students. His academic journey has been marked by deep theoretical exploration into the nature of black holes, particularly focusing on their thermodynamics, Hawking evaporation, acceleration processes, and shadow images. Sultan’s research is known for its innovative approach, leading to numerous published works in high-impact journals.

👨‍🎓Profile

Scopus

Early Academic Pursuits 🎓

Sultan’s academic foundation was laid during his BS in Physics at Govt. College University Faisalabad, where he developed a strong understanding of core physics principles. He further enhanced his academic depth with a Master’s degree (MS) in Black Holes Physics from Riphah International University, where his specialization included complex phenomena like Hawking radiation and black hole accretion. Sultan also pursued an MA in Education to bridge his passion for science with teaching methodology, solidifying his commitment to both research and education.

Professional Endeavors 📚

Sultan’s professional trajectory reflects a profound commitment to education and research. He began his teaching career as a Physics Teacher at Ravi College in Mian Channu (2021-2022), where he imparted knowledge on fundamental physics concepts. In his current role as a Visiting Lecturer at Emerson University Multan, he is recognized for his ability to make complex topics in theoretical physics accessible and engaging for students. His focus on innovative teaching methods enhances students’ learning experiences, positioning him as a dynamic figure in the academic community.

Contributions and Research Focus 🔬

Sultan’s research contributions in black hole physics have been extensive and groundbreaking. He has co-authored numerous papers on subjects like the Hawking evaporation of black holes, thermodynamics of black holes, and greybody factors. His research on Kerr-Newman-Kasuya black holes and Charged Ads black holes has been instrumental in broadening the understanding of phase transitions, stability analysis, and the impact of modified gravity on black holes. His focus is primarily on understanding advanced theoretical phenomena in black hole physics, contributing valuable insights into how gravity theories affect accretion disks, quasinormal modes, and shadow images of black holes.

Impact and Influence 🌍

Sultan’s research publications have made a significant impact in the field of astrophysics, especially within high-energy astrophysics. With contributions to journals such as Physica Scripta, Nuclear Physics B, and High Energy Astrophysics, his work is cited by many in the theoretical physics community. Sultan’s studies on the optical aspects of black holes, along with the dynamic stability of charged dilatonic black holes, reflect his deep understanding and innovative approach to black hole dynamics. His work influences not only theoretical physics but also astronomical observations in terms of black hole imaging and radiation.

Academic Citations 📑

Sultan’s work has already garnered attention in the scientific community, with multiple papers published in high-impact journals and several others under submission. His publications on topics like Hawking Evaporation, Accretion Disk Dynamics, and Greybody Factors are frequently cited by researchers in the fields of general relativity and cosmology. His comprehensive studies on the thermodynamic geometry of black holes have become an essential reference for anyone working in the domain of astrophysical research.

Research Skills 🧑‍🔬

Sultan is well-versed in utilizing advanced computational tools for his research, including Mathematica, Maple, and WinEdt. His proficiency in these tools has enabled him to perform complex calculations, simulations, and data analysis, which are crucial for modeling phenomena such as black hole accretion and shadow images. His ability to engage with complex theories and translate them into computational results further strengthens his research.

Teaching Experience 📚

In addition to his research, Sultan’s teaching career has played a vital role in shaping his professional journey. He has taught undergraduate and postgraduate students at Emerson University and Ravi College, focusing on general physics, theoretical physics, and astrophysics. His teaching philosophy is centered on promoting active learning and fostering critical thinking in students. Sultan’s commitment to pedagogical development is evident through his participation in various workshops, such as Classroom Management and Computational Tools in Research.

Awards and Honors 🏅

Throughout his academic career, Sultan has been recognized for his outstanding contributions to both teaching and research. He has received Certificates of Appreciation for his participation in several prestigious workshops, including those on Nanotechnology Innovations, Classroom Management, and Computational Research Tools. These accolades reflect his dedication to enhancing both his research skills and his teaching effectiveness.

Legacy and Future Contributions 🔮

Muhammad Danish Sultan’s career is marked by his growing influence in the realm of black hole physics and astrophysics. With a solid foundation in both theoretical research and education, Sultan is poised to leave a lasting legacy in the scientific community. His future contributions are likely to push the boundaries of gravitational physics, and his work in emerging gravity theories could lead to new theoretical models and observational technologies in astrophysics. His dedication to research, teaching, and professional development ensures that he will continue to have a significant impact in the academic world, influencing both future researchers and students.

Publications Top Notes

Analysis of Hawking evaporation, shadows, and thermodynamic geometry of black holes within the Einstein SU(N) non-linear sigma model

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan, Asifa Ashraf, Awatef Abidi, Ali M. Mubaraki
    Journal: Journal of High Energy Astrophysics
    Year: 2025

Effect of Modified Gravity in the Hawking Evaporation of Charged Ads Black Hole

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan et al.
    Journal: Physica Scripta
    Year: 2023

Images and stability of black hole with cloud of strings and quintessence in EGUP framework

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan et al.
    Journal: Nuclear Physics B
    Year: 2024

Optical Aspects of Born-Infeld BTZ Black Holes in Massive Gravity

  • Authors: Muhammad Danish Sultan, Shahid Chaudhary et al.
    Journal: Physica Scripta
    Year: 2024

Greybody Factor and Accretion Disk Around Regular Black Holes in Verlinde Emergent Gravity

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan et al.
    Journal: High Energy Astrophysics
    Year: 2025

Rabia Saleem | General Relativity | Member

Assist Prof Dr. Rabia Saleem | General Relativity | Member

PHD at University of the Punjab, Pakistan

Dr. Rabia Saleem, an esteemed HEC Approved Ph.D. Supervisor, is a prominent figure in mathematics, specializing in General Relativity. With 59 research papers in ISI impact factor journals and supervision of 17 MS students, her contributions are substantial. She has taught 50 courses at COMSATS University Islamabad, Lahore Campus. Rabia completed her Ph.D. in General Relativity from the University of the Punjab, Lahore, and has received numerous accolades, including the Indigenous Ph.D. Fellowship and a Research Productivity Award. Her administrative roles include organizing international conferences and serving on committees. Rabia’s expertise and leadership make her a vital asset to the academic community.

Professional Profiles:

Education

Ph.D. in General Relativity (2012-2015) University: University of the Punjab, Lahore Supervisor: Prof. Dr. Muhammad Sharif Thesis Title: “Some Inflationary and Cosmic Issues in General Relativity”

Awards, Scholarships, and Honors:

Indigenous Ph.D. Fellowship, Higher Education Commission, Pakistan (2012-2015) Research Productivity Award (2015-2017) Travel grant from PHEC to attend V Italian-Pakistani Workshop on Relativistic Astrophysics, MXP, Italy (2016) Selected as a Young TWAS Affiliate from Pakistan (2021)

Practical Exposure

Assistant Professor, Department of Mathematics, Govt. College University, Lahore (Jan. 2016 to Jan. 2017) Assistant Professor, Department of Mathematics, COMSATS University Islamabad, Lahore Campus (Feb. 2017 to Present)

Administrative and Social Experience

Organizer of International Conference on Relativistic Astrophysics, 2015 Member of Admission Committee in COMSATS University Islamabad, Lahore Campus (2017-Present) Organizer of 2nd International Conference on Recent Advances in Applied Mathematics, COMSATS University Islamabad, Lahore Campus (2019) Member of Lindau Alumni Network (2019) Lindau Alumni Peer Reviewer (2020) Member of International Research Conference Committee (2021)

Research Focus:

The research focus of R. Saleem appears to be primarily centered around various aspects of theoretical cosmology and gravitational physics. Their work encompasses topics such as warm inflationary universe models, exact wormhole solutions, compact stars, dark energy models, and gravitational theories like f(T, T) gravity. They explore diverse phenomena like inflationary dynamics, cosmological gases, anisotropic models, and the effects of viscous pressure on cosmological evolution. Saleem’s research also delves into interdisciplinary areas, including electrochemical properties of nanomaterials for supercapacitors. Overall, their work contributes significantly to understanding the fundamental aspects of the universe and its evolution through theoretical frameworks and observational implications.

Publications 

  1. Interior solutions of compact stars in f (T, T) gravity under Karmarkar condition, cited by: 24, Publication date: 2020.
  2. The optical appearance of charged four-dimensional Gauss–Bonnet black hole with strings cloud and non-commutative geometry surrounded by various accretions profilescited by: 18, Publication date: 2023.
  3. Confronting the warm vector inflation in Rastall theory of gravity with Planck 2018 datacited by: 17, Publication date: 2020.
  4. Physical aspects of anisotropic compact stars in gravity with off diagonal tetradcited by: 12, Publication date: 2021.
  5. Dynamical study of interacting Ricci dark energy model using Chevallier-Polarsky-Lindertype parametrizationcited by: 9, Publication date: 2020.
  6. Anisotropic spherical solutions via EGD using isotropic Durgapal–Fuloria modelcited by: 8, Publication date: 2021.
  7. Cosmological inflation in f (X) gravity theorycited by: 8, Publication date: 2019.
  8. Exact wormholes solutions without exotic matter in  gravitycited by: 34, Publication date: 2019.
  9. Electromagnetic field and dark dynamical scalars for spherical systemscited by: 11, Publication date: 2019.
  10. Synthesis, characterization and electrochemical properties of α-MnO2 nanowires as electrode material for supercapacitorscited by: 32, Publication date: 2018.

 

.