Zhen-hua Zhao | Particle Physics and Cosmology | Best Researcher Award

Prof. Dr. Zhen-hua Zhao | Particle Physics and Cosmology | Best Researcher Award

Vice President at Liaoning Normal University | China

Zhen-hua Zhao is a distinguished Professor, Vice Dean, and Doctoral Supervisor at the School of Physics and Electronic Technology, Liaoning Normal University. With a strong academic background, he holds a Master’s and Doctoral degree from the Institute of Theoretical Physics, Chinese Academy of Sciences and completed his postdoctoral research at the Institute of High Energy Physics, Chinese Academy of Sciences. Over the years, he has built a reputation in the field of neutrino physics and cosmology.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 🎓

Zhao’s academic journey began with his master’s and doctoral studies in Theoretical Physics at two of China’s top institutions the Institute of Theoretical Physics and the Institute of High Energy Physics at the Chinese Academy of Sciences. These early academic foundations equipped him with a solid understanding of particle physics and cosmology, areas which he has continued to focus on in his career. His doctoral research laid the groundwork for his later work in neutrino physics and the matter-antimatter asymmetry in the universe.

Professional Endeavors 🚀

As a Vice Dean, Professor, and Doctoral Supervisor at Liaoning Normal University, Zhao has been at the forefront of research and education in the field of Physics. His leadership extends beyond the classroom, where he has also been a mentor to future scientists in the field. Zhao is deeply involved in managing research projects, contributing to the development of new talent, and fostering an environment of academic excellence at his university.

Contributions and Research Focus 🔬

Zhao has made substantial contributions to neutrino physics, particularly in neutrino flavor physics and asymmetry in the universe. His research addresses some of the most pressing issues in cosmology, including the origin of matter-antimatter asymmetry. His expertise in high-energy physics has led to significant advancements in neutrino phenomenology, which has direct implications for our understanding of the universe’s evolution. Notable projects include his leadership in studies of neutrinoless double beta decay and other aspects of neutrino interactions.

Impact and Influence 🌍

Zhao’s work has had a far-reaching impact on the field of high-energy physics, with over 40 SCI papers published in top journals like JHEP, PRD, EPJC, and PLB. His research has provided key insights into the flavor physics of neutrinos and contributed to theoretical models addressing the matter-antimatter imbalance in the cosmos. In addition to his publications, Zhao has served as a reviewer for nine prominent journals, playing a pivotal role in shaping scientific discourse in neutrino physics.

Academic Citations 📚

Zhao has been recognized for his impactful work, with 35 of his 40 papers authored as first author or corresponding author. This includes 11 independent author papers, indicating his leadership in the scientific community. Two of his papers were published in the prestigious Reports on Progress in Physics, one of which earned him the 2019 China Top Cited Author Award by IOP Publishing. His work in neutrino physics has received extensive academic attention, with his citations reflecting the influence and relevance of his research.

🧪 Research Skills

Dr. Zhao possesses a comprehensive skill set in theoretical modeling, particle phenomenology, and cosmological simulation, with specialized competence in neutrino oscillation theory, flavor mixing, and CP violation studies. His interdisciplinary approach integrates quantum field theory, cosmological observations, and data-driven theoretical predictions.

👨‍🏫 Teaching Experience

As a Doctoral Supervisor, Dr. Zhao has mentored numerous graduate students and postdoctoral researchers. He has also delivered lectures at graduate summer schools, providing in-depth reviews of current developments in neutrino physics. His role in academia includes developing curricula and promoting cutting-edge research training at the university level.

🏅 Awards and Honors

Dr. Zhao has led three National Natural Science Foundation of China (NSFC) projects and has been recognized as a Top Young Talent under the “Xingliao Talent Plan” in Liaoning Province. In 2024, he was selected as an Outstanding Reviewer for the journal Chinese Physics C, reflecting his commitment to maintaining scientific integrity and rigor in the field.

🌟Legacy and Future Contributions 

Zhao’s future contributions are poised to shape the next frontier in high-energy physics and neutrino studies. His continued leadership in neutrino phenomenology and cosmology will likely yield breakthroughs that further our understanding of the fundamental forces of nature. His ongoing participation in major international projects, including the JUNO experiment and neutrinoless double beta decay experiments, suggests that his influence on both academic research and scientific policy will only grow. His legacy will not only impact the academic world but will also contribute to global scientific collaborations and innovation in high-energy physics.

Publications Top Notes

Low scale leptogenesis under neutrino μ-τ Reflection symmetry

  • Authors: Yan Shao, Zhenhua Zhao
    Journal: Physical Review D, 2025

Complete study of RG evolution induced leptogenesis in flavor symmetry scenarios

  • Authors: Zhenhua Zhao, Xiangyi Wu, Jing Zhang
    Journal: Physical Review D, 2024

Purely flavored leptogenesis from a sudden mass gain of right-handed neutrinos

  • Authors: Zhenhua Zhao, Jing Zhang, Xiangyi Wu
    Journal: Journal of High Energy Physics, 2024

Leptogenesis consequences of trimaximal mixing and μ-τ reflection symmetry in the most minimal seesaw model

  • Authors: Zhenhua Zhao, Hongyu Shi, Yan Shao
    Journal: Physical Review D, 2024

 

 

Albert Munyeshyaka | High-Energy Astrophysics | Best Researcher Award

Dr. Albert Munyeshyaka | High-Energy Astrophysics | Best Researcher Award

University of Rwanda-College of Science and Technology | Rwanda

Albert Munyeshyaka is an exceptional researcher and educator in the field of Astrophysics and Cosmology. Currently pursuing his PhD at the Mbarara University of Science and Technology in Uganda, he is deeply focused on exploring advanced cosmological phenomena, particularly within the context of modified Gauss-Bonnet gravity. Albert’s academic journey spans across Rwanda, Uganda, and Poland, with numerous awards and scholarships showcasing his dedication to advancing the scientific community. His work on cosmic acceleration, large-scale structure formation, and the Hubble tension has earned him recognition among global astrophysics networks.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 📚

Albert’s academic journey began at Kinoni Primary School in Burera District and continued through Ecole Secondaire de Kirambo and Ecole des Science de Gisenyi, where he excelled in Physics, Chemistry, and Mathematics. This strong foundation led him to pursue a Bachelor’s degree in Physics at the University of Rwanda-College of Science and Technology, where he graduated with honors. This solid base in fundamental physics served as a stepping stone toward his later graduate and postgraduate research in Astrophysics at Mbarara University of Science and Technology, Uganda.

Professional Endeavors 💼

Albert’s professional experience includes a position as an Assistant Lecturer at the University of Rwanda, where he teaches undergraduate courses like Electricity and Magnetism for Geotechnical Engineering and Surveying and Geomatics Engineering students. He is also a Research Collaborator on multiple projects, contributing his expertise to projects such as Grant DVC-AAR506/2022. Albert’s collaborative efforts span across multiple esteemed institutions, demonstrating his ability to work effectively in interdisciplinary settings.

Contributions and Research Focus 🧑‍🔬

Albert’s research interests primarily focus on Astrophysics and Cosmology, with particular attention to the large-scale structure formation of the universe and the issues surrounding modified gravity theories. His doctoral research on modified Gauss-Bonnet gravity investigates the intricacies of cosmic acceleration and dark energy, while his work on Chaplygin gas cosmology and perturbation theory explores the fundamental forces that govern the universe. Albert’s contributions to Hubble tension and Sigma 8 are pushing the frontiers of cosmological theory, aiming to solve some of the most pressing challenges in modern physics.

Impact and Influence 🌍

Albert’s influence extends well beyond academia. Through his numerous publications in top-tier journals like the International Journal of Modern Physics and the European Physical Journal C, he is contributing to the understanding of cosmological phenomena and the fundamental laws of the universe. His active participation in international conferences such as the 5th Cosmology School in Krakow, Poland, and his involvement in international collaborations have allowed him to share knowledge and learn from leading figures in the field. Albert’s contributions are shaping future directions in cosmological research.

Research Skills and Expertise 🖥️

Albert’s computational and data analysis skills are one of his greatest assets. He is proficient in using advanced tools such as Maple, Pyplot, LATEX, and Jupyter Notebook for typesetting and data visualization. Additionally, his experience with Machine Learning, MCMC simulations, and MATLAB for data analysis enhances his ability to work on complex astrophysical simulations and data reduction. His work with TOPCAT and IRAF also exemplifies his technical abilities in handling astronomical data.

Teaching Experience 👨‍🏫

As an Assistant Lecturer at the University of Rwanda, Albert has demonstrated a strong commitment to teaching and mentoring the next generation of scientists. He has taught subjects such as Electricity and Magnetism, and his approach to teaching integrates theoretical understanding with practical application. His experience with Geotechnical Engineering and Surveying and Geomatics Engineering students highlights his ability to make complex subjects accessible and engaging.

Awards and Honors 🏆

Albert’s academic journey has been marked by several prestigious awards, including:

  • SIDA Scholarship (Swedish International Development Agency) for PhD studies at Mbarara University of Science and Technology.

  • Grant to attend the 5th Cosmology School in Krakow, Poland.

  • PhD Graduation scheduled for October 2024, with his Viva-Voce defense in May 2024.

  • EAARN Scholarship to pursue a Master’s degree in Astrophysics.

These accolades highlight Albert’s excellence and dedication to his field.

Legacy and Future Contributions 🌠

Albert Munyeshyaka’s career is still in its early stages, yet his research has already made a significant mark in the world of astrophysics. With his continued work in modified gravity theories and cosmological models, Albert is poised to make even more influential contributions in the coming years. His active participation in global scientific networks and his ongoing research projects, such as bulk viscous modified Chaplygin gas and matter power spectrum in modified Gauss-Bonnet gravity, will continue to shape our understanding of the universe and its fundamental laws. As he nears the completion of his PhD, his legacy as a leading researcher in cosmology is already being cemented, with expectations for future breakthroughs in both theoretical and observational physics.

Publications Top Notes

Perturbations with bulk viscosity in modified Chaplygin gas cosmology

  • Authors: Albert Munyeshyaka, Praveen Kumar Dhankar, Joseph Ntahompagaze
    Journal: International Journal of Geometric Methods in Modern Physics
    Year: 2025

On covariant perturbations with scalar field in modified Gauss–Bonnet gravity

  • Authors: Albert Munyeshyaka, Joseph Ntahompagaze, Tom Mutabazi, Manasse Mbonye
    Journal: The European Physical Journal C
    Year: 2024

On Chaplygin models in f(G) gravity

  • Authors: Twagirayezu, Fidele; Ayirwanda, Abraham; Munyeshyaka, Albert; Mukeshimana, Solange; Ntahompagaze, Joseph; Uwimbabazi, Leon Fidele Ruganzu
    Journal: International Journal of Modern Physics D
    Year: 2023

On covariant perturbations with scalar field in modified Gauss-Bonnet gravity

  • Authors: Albert Munyeshyaka, Joseph Ntahompagaze, Tom Mutabazi, Manasse R. Mbonye
    Journal: arXiv
    Year: 2023

On 1 + 3 covariant perturbations of the quasi-Newtonian spacetime in modified Gauss–Bonnet gravity

  • Authors: Albert Munyeshyaka, Joseph Ntahompagaze, Tom Mutabazi, Manasse R. Mbonye
    Journal: International Journal of Modern Physics D
    Year: 2023

 

Shun-Jia Huang | Gravitational Waves | Best Researcher Award

Dr. Shun-Jia Huang | Gravitational Waves | Best Researcher Award

Postdoctor at Sun Yat-sen University | China

Shun-Jia Huang is an accomplished PhD candidate in Theoretical Physics at Sun Yat-sen University, China, with an academic background that includes a Master’s degree and Bachelor’s degree from the same institution. His research focuses primarily on gravitational waves (GW), multi-messenger astronomy, and their applications in cosmology. Currently, he is a postdoctoral researcher at the same university, continuing his cutting-edge work in these fields.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 🎓

Shun-Jia’s academic journey began at Shaoguan University, where he earned his Bachelor’s degree in Physics. He then pursued advanced studies at Sun Yat-sen University, completing his Master’s in Theoretical Physics and currently working towards a PhD. His dedication and aptitude for theoretical physics were evident early on, with his research interests beginning to center on gravitational wave detection and the exciting possibilities of multi-messenger astronomy.

Professional Endeavors 💼

Shun-Jia Huang’s professional trajectory includes significant roles, such as a postdoctoral researcher and a teaching assistant at Sun Yat-sen University. Additionally, he has gained experience as a part-time physics teacher with New Oriental Education & Technology Group, Guangzhou, where he imparted fundamental knowledge in physics. These roles showcase his versatility as both a researcher and an educator, actively contributing to the academic community.

Contributions and Research Focus 🔭

Shun-Jia’s research revolves around gravitational waves (GW) and multi-messenger detection, focusing on the intersections of astronomy, cosmology, and fundamental physics. His work involves gravitational lensing and its application in measuring cosmological parameters. He is particularly interested in double white dwarf binaries, supermassive black hole binaries, and the use of gravitational wave signals to explore the universe. His contributions to TianQin Observatory and research on strongly lensed gravitational wave signals are notable highlights of his career.

Impact and Influence 🌍

Shun-Jia’s research has made a significant impact on the astronomy and cosmology community, contributing to advancements in the detection of gravitational waves and the study of cosmological parameters through multi-messenger astronomy. His work has been widely recognized, and his publications in high-impact journals like Physical Review D and The Astrophysical Journal Supplement Series have paved the way for further studies in gravitational wave astronomy.

Academic Citations 📑

Shun-Jia’s research has garnered 601 citations and an h-index of 9. His work is highly regarded within the field, as evidenced by the impact of his papers, such as those on testing cosmic distance relations and the TianQin mission. His publications in leading astrophysical journals have ensured that his contributions reach a global audience, influencing both current research and future exploration in gravitational wave physics.

Research Skills 🧑‍💻

Shun-Jia possesses strong computational and analytical skills, utilizing tools such as Python, LATEX, Bash, and git for his research. His proficiency in programming languages like C and Fortran, as well as his intermediate knowledge of Mathematica and vim, allows him to perform advanced simulations and data analysis, which are crucial for his research on gravitational waves and multi-messenger detection.

Teaching Experience 👨‍🏫

In addition to his research, Shun-Jia has been an active teaching assistant at Sun Yat-sen University, mentoring students and sharing his knowledge of theoretical physics. His teaching role demonstrates his commitment to education and his ability to communicate complex scientific concepts to students. He also taught physics as a part-time instructor with New Oriental Education & Technology Group, gaining valuable experience in science communication and student engagement.

Awards and Honors 🏆

While his awards and honors are not explicitly listed, his significant contributions to gravitational wave research and multi-messenger astronomy place him as a candidate for recognition and accolades in the field of theoretical physics. The increasing number of citations to his work and his engagement with major conferences suggest that he is on the path to receiving more formal recognition for his contributions to the scientific community.

Legacy and Future Contributions 🔮

Shun-Jia Huang is at the forefront of gravitational wave astronomy and cosmology, and his future contributions promise to further expand our understanding of the universe. His work on gravitational wave lensing, the TianQin mission, and cosmological measurements positions him as a key figure in the next generation of astrophysicists. With his continued focus on multi-messenger detection, his legacy will likely involve groundbreaking discoveries that shape the future of space science and astronomy.

Publications Top Notes

An opacity-free method of testing the cosmic distance duality relation using strongly lensed gravitational wave signals

  • Authors: Shun-Jia Huang, En-Kun Li, Jian-dong Zhang, Xian Chen, Zucheng Gao, Xin-yi Lin, Yi-Ming Hu
    Journal: Physics of the Dark Universe
    Year: 2025

Detection of astrophysical gravitational wave sources by TianQin and LISA

  • Authors: Alejandro Torres-Orjuela, Shun-Jia Huang, Zheng-Cheng Liang, Shuai Liu, Hai-Tian Wang, Chang-Qing Ye, Yi-Ming Hu, Jianwei Mei
    Journal: Sci. China Phys. Mech. Astron.
    Year: 2024

Detecting strong gravitational lensing of gravitational waves with TianQin

  • Authors: Xinyi Lin, Jian-dong Zhang, Liang Dai, Shun-Jia Huang, Jianwei Mei
    Journal: Phys. Rev. D
    Year: 2023

Measuring the Hubble constant using strongly lensed gravitational wave signals

  • Authors: Shun-Jia Huang, Yi-Ming Hu, Xian Chen, Jian-dong Zhang, En-Kun Li, Zucheng Gao, Xin-Yi Lin
    Journal: JCAP
    Year: 2023

Constraining the extra polarization modes of gravitational waves with double white dwarfs

  • Authors: Ning Xie, Jian-dong Zhang, Shun-Jia Huang, Yi-Ming Hu, Jianwei Mei
    Journal: Phys. Rev. D
    Year: 2022

 

 

Muhammad Danish Sultan | High energy physics | Best Researcher Award

Mr. Muhammad Danish Sultan | High energy physics | Best Researcher Award

Visiting Lecturer at Emerson University | Pakistan

Muhammad Danish Sultan is an emerging researcher and educator specializing in the field of Black Hole Physics. He is currently a Visiting Lecturer at Emerson University in Multan, Pakistan, where he shares his knowledge and expertise with aspiring students. His academic journey has been marked by deep theoretical exploration into the nature of black holes, particularly focusing on their thermodynamics, Hawking evaporation, acceleration processes, and shadow images. Sultan’s research is known for its innovative approach, leading to numerous published works in high-impact journals.

👨‍🎓Profile

Scopus

Early Academic Pursuits 🎓

Sultan’s academic foundation was laid during his BS in Physics at Govt. College University Faisalabad, where he developed a strong understanding of core physics principles. He further enhanced his academic depth with a Master’s degree (MS) in Black Holes Physics from Riphah International University, where his specialization included complex phenomena like Hawking radiation and black hole accretion. Sultan also pursued an MA in Education to bridge his passion for science with teaching methodology, solidifying his commitment to both research and education.

Professional Endeavors 📚

Sultan’s professional trajectory reflects a profound commitment to education and research. He began his teaching career as a Physics Teacher at Ravi College in Mian Channu (2021-2022), where he imparted knowledge on fundamental physics concepts. In his current role as a Visiting Lecturer at Emerson University Multan, he is recognized for his ability to make complex topics in theoretical physics accessible and engaging for students. His focus on innovative teaching methods enhances students’ learning experiences, positioning him as a dynamic figure in the academic community.

Contributions and Research Focus 🔬

Sultan’s research contributions in black hole physics have been extensive and groundbreaking. He has co-authored numerous papers on subjects like the Hawking evaporation of black holes, thermodynamics of black holes, and greybody factors. His research on Kerr-Newman-Kasuya black holes and Charged Ads black holes has been instrumental in broadening the understanding of phase transitions, stability analysis, and the impact of modified gravity on black holes. His focus is primarily on understanding advanced theoretical phenomena in black hole physics, contributing valuable insights into how gravity theories affect accretion disks, quasinormal modes, and shadow images of black holes.

Impact and Influence 🌍

Sultan’s research publications have made a significant impact in the field of astrophysics, especially within high-energy astrophysics. With contributions to journals such as Physica Scripta, Nuclear Physics B, and High Energy Astrophysics, his work is cited by many in the theoretical physics community. Sultan’s studies on the optical aspects of black holes, along with the dynamic stability of charged dilatonic black holes, reflect his deep understanding and innovative approach to black hole dynamics. His work influences not only theoretical physics but also astronomical observations in terms of black hole imaging and radiation.

Academic Citations 📑

Sultan’s work has already garnered attention in the scientific community, with multiple papers published in high-impact journals and several others under submission. His publications on topics like Hawking Evaporation, Accretion Disk Dynamics, and Greybody Factors are frequently cited by researchers in the fields of general relativity and cosmology. His comprehensive studies on the thermodynamic geometry of black holes have become an essential reference for anyone working in the domain of astrophysical research.

Research Skills 🧑‍🔬

Sultan is well-versed in utilizing advanced computational tools for his research, including Mathematica, Maple, and WinEdt. His proficiency in these tools has enabled him to perform complex calculations, simulations, and data analysis, which are crucial for modeling phenomena such as black hole accretion and shadow images. His ability to engage with complex theories and translate them into computational results further strengthens his research.

Teaching Experience 📚

In addition to his research, Sultan’s teaching career has played a vital role in shaping his professional journey. He has taught undergraduate and postgraduate students at Emerson University and Ravi College, focusing on general physics, theoretical physics, and astrophysics. His teaching philosophy is centered on promoting active learning and fostering critical thinking in students. Sultan’s commitment to pedagogical development is evident through his participation in various workshops, such as Classroom Management and Computational Tools in Research.

Awards and Honors 🏅

Throughout his academic career, Sultan has been recognized for his outstanding contributions to both teaching and research. He has received Certificates of Appreciation for his participation in several prestigious workshops, including those on Nanotechnology Innovations, Classroom Management, and Computational Research Tools. These accolades reflect his dedication to enhancing both his research skills and his teaching effectiveness.

Legacy and Future Contributions 🔮

Muhammad Danish Sultan’s career is marked by his growing influence in the realm of black hole physics and astrophysics. With a solid foundation in both theoretical research and education, Sultan is poised to leave a lasting legacy in the scientific community. His future contributions are likely to push the boundaries of gravitational physics, and his work in emerging gravity theories could lead to new theoretical models and observational technologies in astrophysics. His dedication to research, teaching, and professional development ensures that he will continue to have a significant impact in the academic world, influencing both future researchers and students.

Publications Top Notes

Analysis of Hawking evaporation, shadows, and thermodynamic geometry of black holes within the Einstein SU(N) non-linear sigma model

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan, Asifa Ashraf, Awatef Abidi, Ali M. Mubaraki
    Journal: Journal of High Energy Astrophysics
    Year: 2025

Effect of Modified Gravity in the Hawking Evaporation of Charged Ads Black Hole

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan et al.
    Journal: Physica Scripta
    Year: 2023

Images and stability of black hole with cloud of strings and quintessence in EGUP framework

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan et al.
    Journal: Nuclear Physics B
    Year: 2024

Optical Aspects of Born-Infeld BTZ Black Holes in Massive Gravity

  • Authors: Muhammad Danish Sultan, Shahid Chaudhary et al.
    Journal: Physica Scripta
    Year: 2024

Greybody Factor and Accretion Disk Around Regular Black Holes in Verlinde Emergent Gravity

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan et al.
    Journal: High Energy Astrophysics
    Year: 2025

Hector Perez de-Tejada | Particle physics and cosmology | Best Faculty Award

Prof. Hector Perez de-Tejada | Particle physics and cosmology | Best Faculty Award

National University of Mexico | Mexico

Dr. Héctor Pérez-de-Tejada is an esteemed researcher and professor at the Institute of Geophysics, UNAM, Mexico. He holds a Doctorate in Space Sciences from the University of Colorado, Boulder and has been a faculty member at UNAM since 1970. As the first Ph.D. in Space Physics at UNAM, he has played a pioneering role in the development of space science research in Mexico.

👨‍🎓Profile

Scopus

Early Academic Pursuits 🎓

Dr. Pérez-de-Tejada’s academic journey began at the National University of Mexico (UNAM), where he completed his undergraduate studies at the School of Sciences. He furthered his education at the University of Colorado, where he obtained his Doctorate in Space Sciences. His early academic experiences set the foundation for his lifelong passion for planetary science and space physics, leading him to specialize in the interaction of the solar wind with planetary ionospheres.

Professional Endeavors 🌍

Since 1970, Dr. Pérez-de-Tejada has dedicated his career to research and education. He became a faculty member in Space Sciences at UNAM and also contributed to the University of Baja California in Ensenada. Throughout his career, he has been involved in cutting-edge space missions, including working as a guest investigator on NASA’s Pioneer Venus Orbiter and contributing to data analysis from the Venus Express spacecraft of the European Space Agency (ESA). His pioneering work in solar wind momentum transport and plasma dynamics has greatly advanced our understanding of planetary atmospheres.

Contributions and Research Focus 🔬

Dr. Pérez-de-Tejada has made over 100 significant publications, focusing on the interaction of solar wind with planetary ionospheres such as those of Venus, Mars, and comets. His work on the viscous transport of solar wind momentum in the Venus ionosheath and the discovery of plasma vortices in the Venus wake, over 40 years ago, have made a lasting impact in the field. He also proposed the theory of plasma channels over the magnetic poles of Venus, driven by the fluid dynamic Magnus force.

Impact and Influence 🌟

Dr. Pérez-de-Tejada’s work has had a transformative impact on the field of space science, particularly in the study of planetary ionospheres and solar wind interactions. His discoveries, such as the existence of plasma vortices and ionospheric holes on Venus, have influenced both contemporary studies and space mission design. His involvement in NASA and ESA missions reflects the international recognition of his work. He has also been a strong advocate for the development of space science infrastructure in Mexico, enhancing its visibility and global standing.

Academic Cites 📚

Dr. Pérez-de-Tejada’s publications have been widely cited in the field of space physics, with references in over 100 academic articles that build upon his theories of plasma dynamics and solar wind interaction. His work remains foundational for ongoing research on planetary atmospheres, especially with regard to Venus and Mars.

Research Skills 🧑‍🔬

Dr. Pérez-de-Tejada’s research is marked by advanced data analysis and theoretical modeling in space sciences. His extensive experience in using data from spacecraft missions such as the Pioneer Venus Orbiter and Venus Express has refined his ability to interpret complex plasma data. His research into the fluid dynamics and Magnus forces on planetary ionospheres demonstrates a deep understanding of both theoretical physics and practical spacecraft data collection.

Teaching Experience 🏫

A dedicated educator, Dr. Pérez-de-Tejada has mentored 15 students in undergraduate, Master’s, and PhD programs at UNAM and the University of Baja California. His students have gone on to make their own contributions in space science, a testament to his ability to inspire and guide the next generation of scientists and researchers. He has also taught and published two academic books, providing invaluable resources for those studying space sciences.

Awards and Honors 🏅

Dr. Pérez-de-Tejada has received numerous accolades in recognition of his work, including a celebration of his 50th anniversary of academic activities at UNAM and being distinguished at the National Workshop in Astrophysics in Mexico, which was named in his honor. His longstanding commitment to space science has been acknowledged both nationally and internationally, further solidifying his status as a leader in the field.

Legacy and Future Contributions 🌱

Dr. Pérez-de-Tejada’s legacy extends beyond his academic publications and mentorship. He was instrumental in the creation of the first ionospheric sounder in Mexico and the acquisition of a planetarium at UNAM. These contributions have helped raise the profile of space sciences in Mexico and contributed to public engagement with astronomy. His future work will likely continue to inspire young scientists while enhancing our understanding of planetary atmospheres and the broader universe.

Publications Top Notes

Wave-Particle Interactions in Astrophysical Plasmas

  • Authors: H. Pérez-De-Tejada, Héctor
    Journal: Galaxies
    Year: 2024

Measurement of plasma channels in the Venus wake

  • Authors: H. Pérez-De-Tejada, Héctor; R.N. Lundin, Rickard N.; Y. Futaana, Yoshifumi; T. Zhang, Tielong
    Journal: Icarus
    Year: 2019

Pluto’s plasma wake oriented away from the ecliptic plane

  • Authors: H. Pérez-De-Tejada, Héctor; H.J. Durand-Manterola, Héctor Javier; M. Reyes-Ruiz, Mauricio; R.N. Lundin, Rickard N.
    Journal: Icarus
    Year: 2015

A large-scale flow vortex in the Venus plasma tail and its fluid dynamic interpretation

  • Authors: R.N. Lundin, Rickard N.; S.V. Barabash, Stanislav V.; Y. Futaana, Yoshifumi; H. Pérez-De-Tejada, Héctor; J.A. Sauvaud, Jean André
    Journal: Geophysical Research Letters
    Year: 2013

Solar wind-driven plasma fluxes from the Venus ionosphere

  • Authors: H. Pérez-De-Tejada, Héctor; R.N. Lundin, Rickard N.; H.J. Durand-Manterola, Héctor Javier; J.A. Sauvaud, Jean André; M. Reyes-Ruiz, Mauricio
    Journal: Journal of Geophysical Research: Space Physics
    Year: 2013

 

 

 

Sobia Sadiq | Astrophysics | Member

Assist Prof Dr. Sobia Sadiq | Astrophysics | Member

PHD at the University of the Punjab, Pakistan

Dr. Sobia Sadiq is an Assistant Professor at the University of Education, Lahore, Pakistan. She holds a Ph.D. in General Relativity (2019) and an M.Phil. in Applied Mathematics (2015) from the University of the Punjab. With a keen interest in Cosmology and Relativistic Astrophysics, she has presented her research at international conferences and seminars. Dr. Sadiq’s academic journey includes notable achievements such as receiving the HEC Indigenous Ph.D. Fellowship and organizing academic events. Her commitment to teaching and research underscores her dedication to advancing the field of Mathematics and Physics.

Professional Profiles:

Education

Feb. 2019 Ph.D. in General Relativity Thesis: Study of Physical Characteristics of Stellar Configurations Supervisor: Prof. Dr. Muhammad Sharif, Dean, Faculty of Science, University of the Punjab, Lahore 4.00 CGPA (Course Work) 4.00 CGPA (Comprehensive) University of the Punjab, Lahore Aug. 2015 M.Phil. in Applied Mathematics Thesis: Conformally Flat Anisotropic Polytropes Supervisor: Prof. Dr. Muhammad Sharif, Dean, Faculty of Science, University of the Punjab, Lahore 3.80 CGPA University of the Punjab, Lahore Jul. 2013 BS Mathematics 3.91 CGPA University of the Punjab, Lahore

Administrative Experience

Organizer, One Day Conference on Gravitation and Cosmology, Department of Mathematics, University of the Punjab, Lahore (2016). Organizer, PU 1st International Conference on Gravitation and Cosmology, Department of Mathematics, University of the Punjab, Lahore (2019). TEACHING EXPERIENCE Visiting Assistant Professor at Department of Mathematics, University of Education, Jauharabad Campus from November 04, 2019 to March 04, 2020. Assistant Professor (TTS) at Department of Mathematics, University of Education, Bank Road Campus, Lahore from December 01, 2021 to to-date.

Awards Scholarships and Honors

3 rd position in Intermediate with merit certificates and prizes awarded by BISE Sargodha and government of the Punjab, Pakistan. Merit Scholarship awarded by Punjab University during BS and M.Phil. 3 rd position in BS Mathematics. HEC Indigenous Ph.D. Fellowship for 5000 Scholars, Phase-II, Batch-III.

Research Interest

Cosmology, Electromagnetic Field Theory, Geometry, Special and General Relativity, Relativistic Astrophysics Mathematical Techniques.

Research Focus:

Dr. Sobia Sadiq’s research focuses on theoretical physics, specifically in the areas of gravitational decoupled solutions, anisotropic geometries, and electromagnetic effects on polytropes. Her work, often in collaboration with Prof. M. Sharif, has contributed significantly to understanding the behavior of charged and anisotropic systems, such as cylindrical and spherical configurations. Additionally, she has explored the thermodynamics of charged black holes and studied tidal effects in regular black holes. Dr. Sadiq’s research addresses fundamental questions in cosmology and astrophysics, shedding light on the intricate dynamics of gravitational and electromagnetic fields within diverse geometric settings.

Publications

  1. Thermodynamics of Charged Black Hole in Symmetric Teleparallel Gravity, cited by: 17, Publication: 2023.
  2. A comparative study of new generic wormhole models with stability analysis via thin-shell, cited by: 11, Publication: 2022.
  3. Charged anisotropic gravitational decoupled strange stars via complexity factor, cited by: 3, Publication: 2022.
  4. Anisotropic stellar solutions in torsion-trace gravity under Karmarkar condition, cited by: 3, Publication: 2022.
  5. Criticality and phase transition of Kerr–anti-de Sitter black hole with quintessence and cloud of strings, cited by: 2, Publication: 2023.
  6. Study of Cylindrical Polytropes with Cosmological Constant, cited by: 1, Publication: 2019.
  7. 2+ 1-dimensional gravitational decoupled anisotropic solutions, cited by: 15, Publication: 2019.
  8. Study of gravitational decoupled anisotropic solution, cited by: 6, Publication: 2019.
  9. Study of conformally flat polytropes with tilted congruence, cited by: 5, Publication: 2018.
  10. Stable anisotropic dissipative quark star with tilted observer, cited by: 2, Publication: 2018.
.

Rabia Saleem | General Relativity | Member

Assist Prof Dr. Rabia Saleem | General Relativity | Member

PHD at University of the Punjab, Pakistan

Dr. Rabia Saleem, an esteemed HEC Approved Ph.D. Supervisor, is a prominent figure in mathematics, specializing in General Relativity. With 59 research papers in ISI impact factor journals and supervision of 17 MS students, her contributions are substantial. She has taught 50 courses at COMSATS University Islamabad, Lahore Campus. Rabia completed her Ph.D. in General Relativity from the University of the Punjab, Lahore, and has received numerous accolades, including the Indigenous Ph.D. Fellowship and a Research Productivity Award. Her administrative roles include organizing international conferences and serving on committees. Rabia’s expertise and leadership make her a vital asset to the academic community.

Professional Profiles:

Education

Ph.D. in General Relativity (2012-2015) University: University of the Punjab, Lahore Supervisor: Prof. Dr. Muhammad Sharif Thesis Title: “Some Inflationary and Cosmic Issues in General Relativity”

Awards, Scholarships, and Honors:

Indigenous Ph.D. Fellowship, Higher Education Commission, Pakistan (2012-2015) Research Productivity Award (2015-2017) Travel grant from PHEC to attend V Italian-Pakistani Workshop on Relativistic Astrophysics, MXP, Italy (2016) Selected as a Young TWAS Affiliate from Pakistan (2021)

Practical Exposure

Assistant Professor, Department of Mathematics, Govt. College University, Lahore (Jan. 2016 to Jan. 2017) Assistant Professor, Department of Mathematics, COMSATS University Islamabad, Lahore Campus (Feb. 2017 to Present)

Administrative and Social Experience

Organizer of International Conference on Relativistic Astrophysics, 2015 Member of Admission Committee in COMSATS University Islamabad, Lahore Campus (2017-Present) Organizer of 2nd International Conference on Recent Advances in Applied Mathematics, COMSATS University Islamabad, Lahore Campus (2019) Member of Lindau Alumni Network (2019) Lindau Alumni Peer Reviewer (2020) Member of International Research Conference Committee (2021)

Research Focus:

The research focus of R. Saleem appears to be primarily centered around various aspects of theoretical cosmology and gravitational physics. Their work encompasses topics such as warm inflationary universe models, exact wormhole solutions, compact stars, dark energy models, and gravitational theories like f(T, T) gravity. They explore diverse phenomena like inflationary dynamics, cosmological gases, anisotropic models, and the effects of viscous pressure on cosmological evolution. Saleem’s research also delves into interdisciplinary areas, including electrochemical properties of nanomaterials for supercapacitors. Overall, their work contributes significantly to understanding the fundamental aspects of the universe and its evolution through theoretical frameworks and observational implications.

Publications 

  1. Interior solutions of compact stars in f (T, T) gravity under Karmarkar condition, cited by: 24, Publication date: 2020.
  2. The optical appearance of charged four-dimensional Gauss–Bonnet black hole with strings cloud and non-commutative geometry surrounded by various accretions profilescited by: 18, Publication date: 2023.
  3. Confronting the warm vector inflation in Rastall theory of gravity with Planck 2018 datacited by: 17, Publication date: 2020.
  4. Physical aspects of anisotropic compact stars in gravity with off diagonal tetradcited by: 12, Publication date: 2021.
  5. Dynamical study of interacting Ricci dark energy model using Chevallier-Polarsky-Lindertype parametrizationcited by: 9, Publication date: 2020.
  6. Anisotropic spherical solutions via EGD using isotropic Durgapal–Fuloria modelcited by: 8, Publication date: 2021.
  7. Cosmological inflation in f (X) gravity theorycited by: 8, Publication date: 2019.
  8. Exact wormholes solutions without exotic matter in  gravitycited by: 34, Publication date: 2019.
  9. Electromagnetic field and dark dynamical scalars for spherical systemscited by: 11, Publication date: 2019.
  10. Synthesis, characterization and electrochemical properties of α-MnO2 nanowires as electrode material for supercapacitorscited by: 32, Publication date: 2018.

 

.

Sunil Kumar Maurya | The Relativity theory | Member

Assoc Prof Dr. Sunil Kumar Maurya | The Relativity theory | Member

PHD at IIT Roorkee, India

Dr. Sunil Kumar Maurya is an Associate Professor and Assistant Dean for Graduate Studies and Research at the University of Nizwa, Oman. With a Ph.D. in Mathematics from IIT Roorkee, India, his expertise lies in Differential Equations, Mathematical Physics, and General Relativity. He has taught a wide range of courses and supervised numerous graduation projects and international Ph.D. students. Dr. Maurya has presented and attended conferences globally, contributing significantly to research in cosmology, astrophysics, and modified gravity theories. With over 3955 Google Scholar citations, he continues to advance the field through extensive publications and funded research projects.

Professional Profiles:

Academic Qualifications

Ph.D. in Mathematics, IIT Roorkee – India, March 2013 M.Sc. in Mathematics, BHU – India, 2008 B.Sc. in Mathematics and Physics, Lucknow University – India, June 2006

Position/Designation: Assistant Dean for Graduate Studies and Research, and Associate Professor Department: Department of Mathematical and Physical Sciences College: Arts and Sciences University: University of Nizwa, Sultanate of Oman

Research interests:

Differential Equations, Similarity Transformations Method, Exact Solutions of Einstein’s Field Equations, Mathematical Physics, Applied Mathematics, General Relativity and Cosmology, Modelling of Compact Stars, Astronomy and Astrophysics, Wormholes, Modified Theory of Gravity, Gravitational Decoupling.

Research Projects

Title: The Astrophysical and Cosmological Implications: From Dark Energy to Modified Theory of Gravity Application Date: December 2019 Amount: 19,504 USD Status: Completed in September 2022 as a Principal Investigator

Research Focus:

Dr. Sunil Kumar Maurya’s research primarily focuses on theoretical astrophysics and general relativity, with a specific emphasis on anisotropic models for compact stars. Through various publications in reputable journals like The European Physical Journal C and Physical Review D, he has extensively explored the properties and behaviors of anisotropic compact objects, investigating their structural characteristics and gravitational effects. Dr. Maurya’s work delves into the intricate interplay between matter and geometry within these compact stellar systems, contributing significantly to our understanding of relativistic astrophysics and providing insights into the fundamental nature of compact stars.

Publications 

  1. Anisotropic models for compact stars, cited by: 162, Publication date: 2015.
  2. Study of anisotropic strange stars in  gravity: An embedding approach under the simplest linear functional of the matter-geometry coupling, cited by: 156, Publication date: 2019.
  3. Generalised model for anisotropic compact starscited by: 145, Publication date: 2016.
  4. A new exact anisotropic solution of embedding class one, cited by: 139, Publication date: 2016.
  5. Anisotropic compact stars in the Buchdahl model: A comprehensive study, cited by: 133, Publication date: 2019.
  6. Charged anisotropic compact star in f (R, T) gravity: A minimal geometric deformation gravitational decoupling approach, cited by: 126, Publication date: 2020.
  7. Generalized relativistic anisotropic compact star models by gravitational decoupling, cited by: 117, Publication date: 2019.
  8. Class I approach as MGD generatorcited by: 102, Publication date: 2020.
  9. Gravitational decoupling minimal geometric deformation model in modified f (R, T) gravity theory, cited by: 97, Publication date: 2020.
  10. Anisotropic relativistic fluid spheres: an embedding class I approach, cited by: 82, Publication date: 2019.

 

 

 

.