Arunima Singh | Computational Methods | Best Researcher Award

Prof. Arunima Singh | Computational Methods | Best Researcher Award

Assistant Professor at Arizona State University | United States

Dr. Arunima K. Singh is an Assistant Professor in the Department of Physics at Arizona State University (ASU) and a graduate faculty member in Materials Science and Engineering. Her research bridges computational materials science, applied physics, and machine learning, focusing on discovering novel materials for energy and electronic applications. She holds a Ph.D. from Cornell University and has conducted postdoctoral research at both NIST and Lawrence Berkeley National Lab. With over 57 publications, her work is highly regarded in the scientific community, earning prestigious awards, editorial roles, and invitations to speak globally on advanced materials research.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Singh’s academic journey began with a B.Tech. (Honors) in Metallurgical and Materials Engineering from IIT Kharagpur, where she earned multiple academic awards and graduated with a departmental silver medal. She pursued graduate studies at Cornell University, receiving both M.S. and Ph.D. degrees in Materials Science and Engineering, with a minor in Applied Physics. Under the guidance of Prof. Richard G. Hennig, her doctoral work focused on theoretical materials design. Her education was supported by prestigious fellowships including the McMullen Fellowship and Dow Chemical Fellowship, laying a strong foundation for her future research career.

💼 Professional Endeavors

Dr. Singh’s professional experience spans national labs and academia. Following her Ph.D., she held postdoctoral appointments at the National Institute of Standards and Technology (NIST) and Lawrence Berkeley National Lab (LBNL), collaborating with leaders like Dr. Francesca Tavazza and Prof. Kristin Persson. Since 2018, she has been a faculty member at ASU, where she also contributes as a graduate mentor and research leader. Beyond teaching and research, she serves on editorial boards, national committees, and plays an active role in shaping research programs in the DOE Energy Frontier Research Center and TMS divisions.

🔬 Contributions and Research Focus

Dr. Singh specializes in computational materials discovery, leveraging density functional theory (DFT), GW-BSE methods, and machine learning to uncover materials for photocatalysis, solar energy, and 2D electronics. She has developed high-throughput workflows like pyGWBSE, enabling scalable simulations for optoelectronic properties. Her notable contributions include predictive models for nanoscroll formation, ultra-wide band gap semiconductors, and surface film protectiveness. She is a pioneer in integrating AI techniques with first-principles simulations, pushing the boundaries of how materials are discovered and optimized for real-world applications, with her work often featured in high-impact journals like npj Computational Materials and Advanced Functional Materials.

🌍 Impact and Influence

With over 4,300 citations, an h-index of 25, and continuous recognition in global venues, Dr. Singh’s influence is widespread. Her research has made foundational contributions to photocatalytic energy materials, grain boundary physics, and 2D nanomaterials. She has mentored students who have gone on to win prestigious poster and research awards, reflecting her impact as an educator and scientist. Invited to give keynote speeches and colloquia across institutions, from Caltech to international webinars, she is recognized as a thought leader in her field. She plays a key role in shaping policy and research strategy through MaRDA, DOE, and TMS platforms.

📊 Academic Cites

Dr. Singh’s work has been published in top-tier journals like npj 2D Materials & Applications, Nano Letters, and Annual Review of Condensed Matter Physics. Her publications are frequently cited, reflecting both depth and breadth of research impact across fields including computational materials science, nanotechnology, and machine learning in physics. Her most cited works address CO₂ reduction photocatalysts, vibrational EELS theory, and strain-induced nanoscrolls. As of March 2025, her Google Scholar profile records 4,396 citations, a 25 h-index, and 35 i10-index, a clear testament to the lasting relevance and utility of her contributions in cutting-edge research.

🧪 Research Skills

Dr. Singh brings expertise in first-principles simulations, high-throughput computing, and machine learning for materials design. She has built custom computational workflows like pyGWBSE and developed data-driven algorithms for stability and performance prediction. Her skillset includes GW-BSE optical simulations, phonon and defect state analysis, and interface science. She collaborates with both theory and experiment teams, enhancing the real-world applicability of her computational models. Proficient in Python, VASP, Quantum ESPRESSO, and emerging AI frameworks, her skills position her at the frontier of materials informatics, enabling novel discoveries in photocatalysis, electronics, and energy storage.

👩‍🏫 Teaching Experience

As an Assistant Professor at ASU, Dr. Singh has taught and mentored students in Physics and Materials Science, often integrating cutting-edge research topics into her coursework. Her mentorship has led to student-led publications, poster awards, and graduate research accolades. She actively supervises Ph.D. students, guiding them through interdisciplinary research spanning condensed matter physics, AI in materials, and 2D materials design. Beyond classroom teaching, she regularly delivers technical workshops, participates in graduate admissions, and contributes to curriculum development. Her commitment to fostering the next generation of scientists is evident in her consistent student-centered approach.

🏆 Awards and Honors

Dr. Singh has earned numerous national and institutional accolades, including the 2023 DOE Early Career Research Award, the 2024 TMS Young Leaders Professional Development Award, and several graduate fellowships from Cornell and Dow Chemical. She has been recognized for her contributions to women in applied physics, being featured in special issues and highlighted by AIP. Her students have also received competitive honors, reflecting her impact as a mentor. These awards underscore her leadership, innovation, and dedication to excellence in research and education, solidifying her status as a standout researcher in materials physics and computational science.

🔮 Legacy and Future Contributions

Dr. Singh is on a trajectory to become a defining voice in AI-enabled materials design and computational physics. Her legacy will likely include tools and frameworks that democratize high-performance computing for materials discovery. As she continues to shape research agendas at DOE centers and through editorial influence, her work will foster sustainable energy solutions, new semiconductor technologies, and broader STEM participation. With a proven record of mentoring, publishing, and innovating, Dr. Singh is building a future where data, physics, and computation converge to revolutionize how materials power the world.

Top Noted Publications

Many-body physics and machine learning enabled discovery of promising solar materials
  • Authors: T. Biswas, A. Gupta, and A. K. Singh*
    Journal: RSC Advances
    Year: 2025
Predicting the structure and stability of oxide nanoscrolls from dichalcogenide precursors
  • Authors: A. Gupta, and A. K. Singh*
    Journal: APL Materials
    Year: 2025
Atomic-Resolution Mapping of Localized Phonon Modes at Grain Boundaries
  • Authors: B. Haas, T. M. Boland, C. Elsasser, A. K. Singh, K. March, J. Barthel, C. T. Koch, and P. Rez
    Journal: Nano Letters
    Year: 2023
Ab Initio-Based Metric for Predicting the Protectiveness of Surface Films in Aqueous Media
  • Authors: R. Gorelik, and A. K. Singh*
    Journal: npj Materials Degradation
    Year: 2023
pyGWBSE: A High Throughput Workflow Package for GW-BSE Calculations
  • Authors: T. Biswas, and A. K. Singh*
    Journal: npj Computational Materials
    Year: 2023

 

 

Zhaocang Meng | Computational Methods | Best Researcher Award

Assist. Prof. Dr. Zhaocang Meng | Computational Methods | Best Researcher Award

Institute of Modern Physics, Chinese Academy of Sciences | China

Dr. Zhaocang Meng is a materials physicist specializing in first-principles simulations, irradiation damage modeling, and additive manufacturing of advanced materials. He earned his Ph.D. in Science through a joint program between the Institute of Modern Physics, Chinese Academy of Sciences (CAS) and Lanzhou University. His research spans the atomic-scale behavior of defects, mechanical property evaluation, and high-throughput screening for material optimization. Currently based at the Institute of Modern Physics, CAS, he is an integral contributor to strategic projects funded by both national and provincial Chinese foundations.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Dr. Meng began his academic journey at Northwest Normal University, majoring in Physics and Electronic Engineering, where he laid the groundwork in material science and theoretical physics. He continued his master’s studies at the Institute of Modern Physics, CAS, focusing on radiation effects and material behavior. His intellectual curiosity and growing expertise led to a Ph.D. (2018–2021) in a joint doctoral program between CAS and Lanzhou University, where he honed his skills in density functional theory (DFT) and multi-scale simulations, preparing him for a robust career in theoretical and computational materials science.

💼 Professional Endeavors

Since July 2021, Dr. Meng has served as a researcher at the Institute of Modern Physics, Chinese Academy of Sciences, contributing to major national research initiatives, including the CAS Strategic Priority Program. His role encompasses both theoretical modeling and applied computation for nuclear-grade materials, ceramics, and metallic systems. He is actively involved in Grain Boundary Segregation Engineering for SiC and BeO, and supports the development of neural network potentials. His practical contributions extend to thermophotovoltaic energy systems and irradiation-resilient structural materials, demonstrating a bridge between computational insight and real-world application.

🔬 Contributions and Research Focus 

Dr. Meng’s primary contributions lie in the atomistic modeling of radiation-induced defects, grain boundary behavior, and mechanical performance of ceramics and metals. His first-principles investigations in materials like Ti₃AlC₂, BeO, SiC, and Be₁₂Ti have revealed novel insights into defect–impurity interactions, hydrogen/helium diffusion, and segregation phenomena under extreme environments. He has also made impactful strides in the development of neural network potentials for materials like SiC, allowing large-scale simulations with quantum-level accuracy. His work directly supports the advancement of materials for nuclear reactors, space missions, and extreme-condition engineering.

🌍 Impact and Influence

Dr. Meng’s work has influenced fields such as nuclear materials, condensed matter theory, and computational materials science. His articles in high-impact journals like Physical Chemistry Chemical Physics, Journal of Nuclear Materials, and RSC Advances have become key references in radiation material modeling. His collaborations across diverse domains, from hydrogen embrittlement to deep potential learning for FCC copper, highlight his versatility. The adoption of his findings in defect prediction and grain boundary design has practical implications for materials used in reactors and space technology, positioning him as a rising figure in next-generation material research.

📚 Academic Cites 

With a growing body of 14+ peer-reviewed publications, Dr. Meng’s research outputs have earned significant citations in domains like irradiation defect dynamics, machine-learned interatomic potentials, and grain boundary engineering. His work on Ti₃AlC₂ and Be₁₂Ti systems has been cited for its pioneering insights into defect clusters and transmutation effects, while his 2023 papers on SiC doping and neural network-based modeling have gained traction among materials engineers and computational physicists. His interdisciplinary footprint, combining physics, chemistry, and mechanical engineering, enhances his recognition across both academic and applied research networks.

🛠️ Research Skills 

Dr. Meng demonstrates mastery in first-principles methods (DFT), molecular dynamics, machine learning potentials, and multi-scale simulation frameworks. His computational toolkit includes VASP, Quantum ESPRESSO, LAMMPS, and deep learning platforms like DeePMD-kit. He excels in automated high-throughput screening, grain boundary structure prediction, and radiation damage modeling. His ability to link atomic-level processes to macroscopic properties allows him to tackle engineering problems with atomic precision. He is adept at designing simulation protocols that align with experimental validations, ensuring a feedback loop between theory and practice a critical skill in today’s data-driven research environment.

👨‍🏫 Teaching Experience 

While primarily a researcher, Dr. Meng has informally mentored junior scientists and graduate students during his tenure at the Institute of Modern Physics. He has contributed to internal training modules and simulation workshops focusing on first-principles methods and materials modeling software. As his academic journey matures, he is well-positioned to engage in formal teaching or curriculum development, especially in computational material science, AI-driven simulations, and solid-state physics. His clarity in technical writing and collaborative style suggest strong potential as a future university lecturer or postgraduate supervisor.

🏅 Awards and Honors 

Although specific awards are not mentioned, Dr. Meng’s selection for national strategic research programs (e.g., CAS Grant No. XDA0410000) and provincial funding initiatives like Guangdong Basic Research Foundation reflect institutional recognition of his capabilities. His consistent publication record in top-tier international journals underscores his scientific credibility. Being chosen to lead studies involving Grain Boundary Engineering and deep learning potentials in cutting-edge materials confirms his reputation among peers and senior collaborators. With this trajectory, formal honors such as Young Scientist Awards or Outstanding Researcher Fellowships are highly likely in the near future.

🔮 Legacy and Future Contributions 

Dr. Zhaocang Meng is poised to leave a lasting legacy in predictive materials design. His work in irradiation resistance, grain boundary tailoring, and AI-driven material exploration sets a solid foundation for next-gen energy systems, including fusion reactors, radioisotope thermoelectric generators, and space propulsion materials. Future contributions may include cross-disciplinary collaboration with AI scientists, sustainable materials discovery, and experimental validation partnerships. His potential to transition from a leading researcher to a thought leader and educator is evident. Dr. Meng represents a new era of materials scientists who bridge theory, computation, and practical innovation.

Top Noted Publications

Segregation and aggregation behavior of impurity atoms at grain boundaries of BeO: A first-principles study

  • Authors: Xuejie Wang, Teng Shen, Canglong Wang, Kai He, Zhaocang Meng*, et al.
    Journal: Journal of Nuclear Materials
    Year: 2025

Screening and manipulation by segregation of dopants in grain boundary of Silicon carbide: First-principles calculations

  • Authors: Z.C. Meng, C.L. Wang, Y.L. Wang, et al.
    Journal: Ceramics International
    Year: 2023

First-principles investigations of oxygen interaction with hydrogen/helium/vacancy irradiation defects in Ti₃AlC₂

  • Authors: Zhaocang Meng, Canglong Wang, Jitao Liu, Yinlong Wang, Xiaolu Zhu, Lei Yang, Liang Huang
    Journal: Physical Chemistry Chemical Physics
    Year: 2021

New insight into the interaction between divacancy and H/He impurity in Ti₃AlC₂ by first-principles studies

  • Authors: Zhaocang Meng, Canglong Wang, Jitao Liu, Yinlong Wang, Xiaolu Zhu, Lei Yang, Liang Huang
    Journal: Physical Chemistry Chemical Physics
    Year: 2020

Deep potential for a face-centered cubic Cu system at finite temperatures

  • Authors: Y.Z. Du, Z.C. Meng, Q. Yan, et al.
    Journal: Physical Chemistry Chemical Physics
    Year: 2022

 

Mohammed A. Al-Seady | Computational Methods | Best Researcher Award

Dr. Mohammed A. Al-Seady | Computational Methods | Best Researcher Award

PhD Student at  University of Szeged/College of Science and Informatics | Hungary

Mohammed A. Al-Seady is a passionate and emerging materials scientist and computational physicist from Iraq, currently pursuing his PhD in Physics at the University of Szeged, Hungary. He serves as a researcher at the Center for Environmental Research and Studies, University of Babylon. With a Master’s degree in Molecular Sciences focusing on graphene-based materials, Al-Seady is deeply committed to advanced research in two-dimensional nanomaterials, renewable energy applications, and environmental remediation. He has authored 16 peer-reviewed articles, demonstrating his dedication to addressing critical scientific and global sustainability challenges through computational modeling and simulation techniques.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Mohammed A. Al-Seady began his academic journey at the University of Babylon, where he earned his B.Sc. and M.Sc. degrees in Physics in 2015. His early fascination with nanostructures and materials science, particularly graphene, inspired him to specialize in Molecular Sciences. His academic performance and enthusiasm for scientific inquiry distinguished him early, earning him opportunities to work closely with faculty on graphene synthesis, material characterization, and fundamental physics modeling. These formative years laid a strong theoretical and experimental foundation for his future contributions in nanotechnology and computational materials physics.

💼 Professional Endeavors

Professionally, Al-Seady has held the position of Researcher at the Center for Environmental Research and Studies, University of Babylon, contributing to key environmental technology projects. Simultaneously, he is advancing his doctoral studies in Physics at the University of Szeged in Hungary. His professional path reflects a commitment to international academic collaboration, research excellence, and scientific development across both Iraq and Europe. By balancing his roles in academic research and higher education, he is establishing himself as a versatile scientist working on the intersection of theoretical physics, materials engineering, and green technology innovation.

🔬 Contributions and Research Focus

Mohammed’s research centers on two-dimensional (2D) materials such as graphene and hexagonal boron nitride (h-BN), with applied work in photovoltaics, ionic batteries, dye-sensitized solar cells (DSSCs), and gas adsorption. His work uses computational modeling tools like Gaussian09, Quantum ESPRESSO, and Materials Studio to simulate and optimize the performance of nanostructured materials. By focusing on environmental and energy applications, he contributes solutions to pollution control, energy storage, and solar energy harvesting, creating a bridge between theoretical studies and real-world environmental impact.

🌍 Impact and Influence

With 16 peer-reviewed publications, Mohammed A. Al-Seady’s research is gaining traction in the fields of computational nanomaterials, sustainable energy, and environmental technology. His interdisciplinary work helps shape the scientific discourse on the use of 2D materials in renewable energy and remediation systems. His involvement in both local research institutions and European academic networks demonstrates his ability to act as a scientific connector. Through his publications and collaborations, he is building an international research footprint and influencing future studies on green nanotechnology and computational simulations.

📚 Academic Citations

Al-Seady’s publications are indexed on Scopus and ResearchGate, reflecting a growing citation count and peer engagement. His Scopus author ID (57223213775) shows his inclusion in global citation networks, ensuring the visibility of his contributions to the academic community. Though still in the early stages of his research career, the consistent quality and relevance of his work are leading to increased citations in journals focusing on nanomaterials, computational physics, and clean energy. His scholarship is steadily building a reputation for rigor and applicability.

🧠 Research Skills

Mohammed has developed a robust technical skill set essential for advanced materials research. His proficiency in Python and C programming supports his work in numerical modeling and simulations, while tools like Quantum ESPRESSO and Gaussian09 enable him to perform high-accuracy density functional theory (DFT) calculations. His expertise extends to scientific writing, data interpretation, and computational analysis, making him an asset in both independent and collaborative projects. These skills allow him to design, model, and optimize novel nanomaterials for a wide range of energy and environmental applications.

👨‍🏫 Teaching Experience

While his profile emphasizes research, Mohammed has contributed to educational activities at the University of Babylon, supporting physics coursework and helping students understand quantum mechanics, computational modeling, and material science concepts. He has supervised undergraduate lab sessions and provided technical mentoring to research interns working on nanotechnology-related projects. His ability to translate complex scientific ideas into accessible educational content highlights his strength as an emerging educator. As he progresses in his career, his teaching contributions are expected to expand alongside his research output.

🔮 Legacy and Future Contributions

Mohammed A. Al-Seady is on a promising trajectory toward becoming a leading figure in computational materials science. His ongoing work aims to push the boundaries of 2D material applications for clean energy, sustainability, and pollution mitigation. With plans to broaden his research collaborations, mentor the next generation of scientists, and contribute to global scientific innovation, Mohammed’s legacy will likely include transformative contributions to green nanotechnology. As his career matures, he is expected to play a pivotal role in shaping scientific solutions for environmental and energy crises worldwide.

Top Noted Publications

Improved light harvesting with graphene/boron nitride nano-heteroislands: a high-efficiency photosensitizer design
  • Authors: Mohammed A. Al-Seady, Hayder M. Abduljalil, Hussein Hakim Abed, Mudar A. Abdullsatar, Rajaa K. Mohammad, Saif M. Hassan, Osamah J. Al-sareji, Mousumi Upadhyay Kahaly

  • Journal: Structural Chemistry

  • Year: 2024

Ethanol properties effects on its reaction with Mo-doped SnO₂ clusters: A gas sensor model
  • Authors: Mudar Ahmed Abdulsattar, Rashid Hashim Jabbar, Mohammed A. Al-Seady

  • Journal: Results in Surfaces and Interfaces

  • Year: 2024

Investigation of Nitrogen Dioxide Gas Sensing Characteristics in Boron Nitride and Aluminum Nitride Nanoribbons: A First Principles Study
  • Authors: Mohammed A. Al-Seady

  • Journal: Library Progress International

  • Year: 2024

Temperature and humidity effects on the acetone gas sensing of pristine and Pd-doped WO₃ clusters: A transition state theory study
  • Authors: Mudar Ahmed Abdulsattar, Hayder M. Abduljalil, Hussein Hakim Abed, Mohammed A. Al‑Seady

  • Journal: Journal of Molecular Modeling

  • Year: 2024

Unveiling the potential of graphene and S-doped graphene nanostructures for toxic gas sensing and solar sensitizer cell devices: insights from DFT calculations
  • Authors: S.A.A. Alsaati, Rabab Saadoon Abdoon, Eman Hamid Hussein, Hayder M. Abduljalil, Rajaa K. Mohammad, Mohammed A. Al-Seady, Ansaf N. Jasim, Noor Al-Huda Saleh, Lynet Allan

  • Journal: Journal of Molecular Modeling

  • Year: 2024

 

Vivek Kumar Jain | Computational Methods | Best Researcher Award

Assoc. Prof. Dr. Vivek Kumar Jain | Computational Methods | Best Researcher Award

Associate Professor at Career Point University Kota | India

Dr. Vivek Kumar Jain is an accomplished Associate Professor of Physics at the School of Basic and Applied Sciences, Career Point University, Kota, Rajasthan. With a Ph.D. from Mohanlal Sukhadia University, he specializes in electronic structure, magnetic properties, and material science. He actively participates in academic committees including IQAC, NAAC, and IPR Cell. Dr. Jain’s academic journey reflects dedication to both teaching and research, contributing significantly to physics education and innovative materials research.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📚 Early Academic Pursuits

Dr. Jain’s academic foundation was laid in Rajasthan, completing his B.Sc. and M.Sc. in Physics from Dayanand Saraswati University, Ajmer. He earned his Ph.D. in 2018 focusing on the electronic and magnetic properties of intermetallic alloys. Alongside physics, he gained certifications in Information Technology (RSCIT) and a Diploma in IT, showcasing a versatile skill set. His early accolades in science and cultural competitions highlight a strong academic and extracurricular background from school through college.

💼 Professional Endeavors

Dr. Jain has over 15 years of teaching experience, beginning as an assistant professor at premier institutes like Poornima College of Engineering and Swami Keshwanand Institute. He currently serves as an Associate Professor at Career Point University since 2022. Throughout his career, he has held roles such as admission counselor, examination coordinator, and committee member for NAAC and BOS, reflecting his deep engagement in academic governance and student mentoring.

🔬 Contributions and Research Focus

His research primarily focuses on the first-principles computational studies of Heusler alloys and spintronic materials, investigating their structural, magnetic, elastic, and optical properties. Dr. Jain has authored numerous publications in prestigious journals like Journal of Electronic Materials and Journal of Superconductivity and Novel Magnetism. He has also contributed to studies on nanomaterials and electronic devices, further enriching materials science research.

🌟 Impact and Influence

Dr. Jain’s work has made significant strides in advancing the understanding of spin gapless semiconductors and half-metallic materials vital for spintronics and electronic applications. His research outputs have influenced both theoretical frameworks and experimental approaches in the field. Additionally, his active participation in patent publications demonstrates his commitment to applied sciences and innovation, bridging academic research with practical technologies.

📈 Academic Cites

With numerous publications in renowned international journals by publishers such as Springer and Elsevier, Dr. Jain’s research has garnered wide academic recognition. His collaborative work with experts and students has resulted in over 20 impactful journal papers and several conference proceedings. This body of work has contributed to the scientific community’s knowledge on electronic materials and inspired ongoing research in magnetism and material science.

🛠️ Research Skills

Dr. Jain excels in first-principles calculations, density functional theory (DFT), and computational material science. His expertise includes electronic structure analysis, magnetic property evaluation, and optical behavior studies of intermetallic and Heusler alloys. Complementing his theoretical skills, he is proficient in academic writing, data analysis, and research supervision, mentoring Ph.D. scholars in cutting-edge materials research.

👩‍🏫 Teaching Experience

With over 15 years as a dedicated physics educator, Dr. Jain has taught undergraduate and postgraduate students across multiple institutions. His roles span laboratory coordination, admission counseling, and academic mentorship, fostering student engagement in science. He emphasizes a practical and research-oriented approach to teaching, integrating his research insights into the curriculum to enhance learning outcomes in material physics and computational methods.

🏆 Awards and Honors

Dr. Jain has earned multiple accolades from early schooling days, including first positions in science and essay competitions at district and college levels. He was awarded the prestigious UGC Basic Science Research Fellowship (BSR), reflecting his academic excellence. His recognition spans debate competitions and research fellowships, underpinning a well-rounded profile of scholarly achievements and extracurricular distinction.

🔮 Legacy and Future Contributions

Dr. Vivek Kumar Jain continues to impact the scientific community through cutting-edge research, academic leadership, and innovative teaching. His future plans include expanding work on spintronic devices, nanomaterials applications, and fostering interdisciplinary collaborations. With ongoing patents and book publications, he is poised to contribute significantly to next-generation materials science and physics education, inspiring future researchers and students.

Top Noted Publications

  • First principles investigations of Fe₂CrSi Heusler alloys by substitution of Co at Fe site
    Authors: Rakesh Jain, N. Lakshmi, Vivek Kumar Jain, Aarti R. Chandra
    Journal: AIP Conference Proceedings
    Year: 2018

  • Study of the electronic structure properties in Co₂NbIn/Sn Heusler alloys
    Authors: Aarti R. Chandra, Vishal Jain, N. Lakshmi, Rakesh Jain, Vivek Kumar Jain
    Journal: AIP Conference Proceedings
    Year: 2018

  • Structural, Electronic and Optical Properties of ZnO material using first principle calculation
    Authors: Jaiveer Singh, Vivek Kumar Jain
    Journal: Journal of Polymer and Composites
    Year: 2023

  • Effects of channel length and gate dielectric material on electrical properties of an IGZO TFT
    Authors: Archana Jain, Vivek Kumar Jain, Lalit Kumar Lata, Abhinandan Jain
    Journal: Materials Today: Proceedings
    Year: 2022

  • Effect of temperature and Co-addition on phase stability, magnetic and electronic properties of Fe₂₋ₓCoₓMnAl quaternary Heusler alloys for spintronics devices
    Authors: Ashok Yadav, Vivek Kumar Jain, Vinesh Attatappa, N. Lakshmi, Arun Sharma, Sarvesh Kumar Pandey, Shikha Awasthi
    Journal: Journal of Alloys and Compounds
    Year: 2025

 

 

Mansur Mustafaoğlu | Computational Methods | Academic Achievement in Physics Award

Dr. Mansur Mustafaoğlu | Computational Methods | Academic Achievement in Physics Award

Atatürk University | Turkey

Dr. Mansour Nasiri Khalaji is a seasoned mechanical engineer and researcher, currently affiliated with the Department of Mechanical Engineering at Atatürk University, Erzurum, Turkey. With a profound commitment to thermal sciences, Dr. Khalaji has developed an international academic presence, particularly in the domains of heat transfer, fluid mechanics, and computational modeling.

👨‍🎓Profile

Google scholar

ORCID

📘 Early Academic Pursuits

Dr. Khalaji began his academic journey with a passion for mechanical systems and thermal processes. His Master’s thesis, titled “Experimental and Numerical Investigation of Heat and Flow in a Cross Heat Exchanger System”, laid a strong foundation in both experimental methods and numerical simulations. Building on this, his PhD research focused on “Flow and Heat Transfer in Newtonian and Non-Newtonian Flows in Different Bifurcation Models”, showcasing early specialization in complex fluid behaviors.

🏢 Professional Endeavors

Dr. Khalaji currently works in the Heat Laboratory at Atatürk University, where his main responsibilities include monitoring, mechanical engineering analysis, and the application of CFD tools. As a researcher in the Department of Thermodynamics, he applies his technical expertise to advance energy-efficient solutions and thermal system designs.

🔬 Contributions and Research Focus

Dr. Khalaji’s research spans various critical areas, including computational fluid dynamics (CFD), heat exchangers, photovoltaic systems, and thermal performance optimization. He is proficient in ANSYS-FLUENT, SOLIDWORKS, MATLAB, and the Taguchi method, enabling him to model and simulate highly accurate thermal systems. His collaborative works also explore carbon nanotubes, bifurcation models, and plate-fin heat exchangers, bridging the gap between applied physics and mechanical engineering.

🌍 Impact and Influence

His published work in journals like Applied Thermal Engineering, Journal of Heat Transfer, and Mechanics of Advanced Materials and Structures has significantly contributed to advancements in energy systems and thermal design. His research has implications for renewable energy, industrial cooling systems, and sustainable engineering practices, reinforcing his position as a thought leader in applied thermodynamics.

📈 Academic Citations

Dr. Khalaji has co-authored over a dozen high-impact journal articles, many of which are widely cited in the fields of mechanical engineering, heat transfer, and energy systems. While his h-index and total citations are not explicitly mentioned here, the breadth and depth of his contributions suggest a growing scholarly influence.

🛠️ Research Skills

His technical toolkit includes expertise in CFD modeling, heat exchanger design, thermal-fluid analysis, and parametric optimization using statistical tools. His work reflects a blend of hands-on experimentation and advanced computational analysis, making him a well-rounded researcher in both theoretical and applied mechanics.

👨‍🏫 Teaching Experience

While not elaborated in detail, his role at Atatürk University likely includes academic supervision, undergraduate and graduate instruction, and laboratory mentoring. His multilingual ability (Persian, English, Azeri, and Turkish) further enhances his effectiveness as an educator in diverse academic environments.

🏅 Awards and Honors

Although specific awards are not listed, Dr. Khalaji has been involved in nationally funded projects such as the TÜBİTAK Project and BAP Project, which support cutting-edge research in thermal systems design. His peer-reviewed publications and collaborative work with prominent researchers indicate recognition from the academic and engineering community.

🌟 Legacy and Future Contributions

Looking ahead, Dr. Khalaji is poised to make impactful contributions to next-generation energy systems, high-efficiency heat exchangers, and innovative cooling technologies. His multidisciplinary approach positions him as a potential leader in academic research, industrial innovation, and global energy sustainability efforts.

Top Noted Publications

Numerical Investigation of Changes in Heat Transfer Coefficient of Water-Aluminum Oxide Nanofluid Cooling in Nuclear Reactors

  • Authors: Mansur Mustafaoglu
    Journal: Nuclear Technology
    Year: 2025

Numerical analysis of the three-dimensional model of pulsatile and non-Newtonian blood flow in a carotid artery with local occlusion

  • Authors: Mansur Mustafaoğlu, İsak Kotçioğlu, Muhammet Kaan Yeşilyurt
    Journal: Mathematical Modelling and Numerical Simulation with Applications
    Year: 2025

Numerical thermal analysis of armchair (6,6) and zig-zag (12,0) carbon nano-tubes (CNTs)

  • Authors: I. Kotcioglu, M. Mustafaoglu, N. Dogan
    Journal: Mechanics of Advanced Materials and Structures
    Year: 2024

Heat transfer analysis of armchair (5,5) and zigzag (10,0) carbon nanotubes

  • Authors: Isak Kotcioglu, Mansour Nasiri Khalaji, Nihat Dogan
    Journal: Mechanics of Advanced Materials and Structures
    Year: 2021

 

 

Hoc Nguyen | Computational Methods | Best Researcher Award

Assoc. Prof. Dr. Hoc Nguyen | Computational Methods | Best Researcher Award

Senior Lecturer at Hanoi National University of Education | Vietnam

Nguyen Quang Hoc D, Assoc. Prof. PhD, is a distinguished academic and researcher in the field of Theoretical Physics. He currently holds the position of High-ranking Lecturer at the Department of Theoretical Physics, Faculty of Physics, at the Hanoi National University of Education, where he has contributed extensively to both teaching and research since 2009. His academic journey reflects a deep commitment to physics, spanning over decades of study and experience in solid-state physics, theoretical physics, and mechanical properties of materials.

👨‍🎓Profile

ORCID

Early Academic Pursuits 🎓

Nguyen Quang Hoc D embarked on his academic career with a solid foundation in solid-state physics, earning his Engineer degree from Hanoi University of Technology in 1982. His deep interest in theoretical physics led him to pursue advanced studies at the Hanoi National University of Education, where he completed his Master’s degree in Theoretical Physics in 1989 and later achieved his PhD in 1994, further honing his expertise in the field.

Professional Endeavors 💼

His professional career began in 1983 at the College of Teacher Training (now Haiphong University), where he served as a Lecturer and Head of the Physical Laboratory until 1994. Later, he joined the Institute of Nuclear Science and Technique, VINATOM in 1994, contributing as a Researcher. In 1997, he transitioned to the Department of Scientific Management, Faculty of Physics at Hanoi National University of Education, where he took on roles as an Expert and Principal Lecturer until he became an Associate Professor in 2009. Since 2016, he has remained in his current capacity as a High-ranking Lecturer at the university.

Contributions and Research Focus 🔬

Prof. Nguyen Quang Hoc D has focused much of his research on mechanical and thermodynamic properties of metals and interstitial alloys, particularly through the statistical moment method. His work has provided valuable insights into the transport properties of superconductors and how artificial nanostructures can influence these properties. His research has significant implications in materials science, particularly in understanding how nanostructures can improve the performance of superconductors in real-world applications.

Impact and Influence 🌍

With a career spanning more than three decades, Assoc. Prof. Nguyen Quang Hoc D has made lasting contributions to both academic research and teaching. His work on superconductors and nanostructure materials has advanced our understanding of the mechanical and thermodynamic properties of advanced materials. His findings have opened the door for further studies in nanotechnology and material science, positioning him as a leading figure in the development of advanced materials in the Vietnamese academic community.

Academic Citations 📚

Prof. Nguyen Quang Hoc D has earned recognition for his work, resulting in numerous academic citations and publications in international journals related to materials physics. His contributions to the field of theoretical physics have significantly impacted the understanding of interstitial alloys, superconductivity, and the behavior of metals under extreme conditions, making him a respected authority in his field.

Research Skills 🧠

Assoc. Prof. Nguyen Quang Hoc D possesses advanced research skills in statistical methods, materials characterization, and nanotechnology. His expertise includes the application of the statistical moment method to study the thermodynamic behavior of materials, allowing him to analyze and predict the mechanical properties of metals and alloys under various conditions. He has also worked on superconductivity, making contributions to transport properties and the influence of nanostructure pinning on type-II superconductors.

Teaching Experience 👨‍🏫

Assoc. Prof. Nguyen Quang Hoc D has a wealth of teaching experience, spanning over two decades at the Hanoi National University of Education. He has taught a range of undergraduate and graduate courses in theoretical physics and solid-state physics, providing students with foundational knowledge while also challenging them with cutting-edge concepts in the field. His role as a mentor and principal lecturer has helped shape the next generation of physicists and scientists in Vietnam.

Awards and Honors 🏅

Throughout his career, Assoc. Prof. Nguyen Quang Hoc D has been the recipient of various awards and honors in recognition of his contributions to the field of physics. His dedication to both research and teaching has earned him respect within the academic community, and he continues to inspire those around him with his innovative research and commitment to excellence.

Legacy and Future Contributions 🌱

As Assoc. Prof. Nguyen Quang Hoc D continues his work at Hanoi National University of Education, his legacy remains rooted in his innovative research, teaching dedication, and academic leadership. Moving forward, he is expected to continue influencing the field of material science, particularly in the realms of superconductivity and nanotechnology. His future contributions will undoubtedly lead to advancements in the understanding of metals, alloys, and superconductive materials, strengthening the scientific community in Vietnam and beyond.

Publications Top Notes

On the Melting of Crystal Under Compression: SMM Fundamental Theory and its Application to Laser Materials Processing

  • Authors: Nguyen Quang Hoc, Le Hong Viet
    Journal: Transactions of the Indian Institute of Metals
    Year: 2025

Theoretical predictions of thermodynamic properties, elastic deformation, HCP-FCC structural phase transition and melting of iron at high temperatures up to 18000 K and high pressures up to 4000 GPa

  • Authors: Nguyen Quang Hoc, Nguyen Duc Trung, Hua Xuan Dat, Le Thu Lam
    Journal: Physics Letters A
    Year: 2025

Correction: Thermodynamic properties of perovskite MgSiO3 with cubic structure under extreme conditions

  • Authors: Quang Hoc Nguyen, Nhi Quynh Ngo, Thi Mai Dao, Cong Vien Tran, Thi Thu Tra Lai, Thi Van Anh Le, Thi Thuy An Nguyen
    Journal: The European Physical Journal B
    Year: 2024

Thermodynamic properties of perovskite MgSiO3 with cubic structure under extreme conditions

  • Authors: Hoc Quang Nguyen, Nhi Quynh Ngo, Mai Thi Dao, Vien Cong Tran, Tra Thi Thu Lai, Anh Thi Van Le, An Thi Thuy Nguyen
    Journal: The European Physical Journal B
    Year: 2024

Study on Remelting of Crystal Under Extreme Conditions

  • Authors: Hoc Quang Nguyen, Huyen Thanh Thi Tran, Nhi Quynh Ngo, Mai Thi Dao, Phong Khac Nguyen
    Journal: Transactions of the Indian Institute of Metals
    Year: 2024

 

 

Ali Zaoui | Computational Methods | Computational Science Excellence Award

Prof. Ali Zaoui | Computational Methods | Computational Science Excellence Award

Djillali Liabes University of SIDI BELI ABBES | Algeria

Ali Zaoui is a Professor and Team Leader at the Physics Computational Materials Laboratory at the University of Sidi Bel Abbes, Algeria. With a distinguished career spanning several decades, he has made significant contributions to the field of computational materials science. Zaoui holds a PhD in Material Sciences and has taught in various capacities, progressing from General Physics to Nanotechnology at the University of Sidi Bel Abbes.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 🎓

Zaoui’s academic journey began with a B.Sc. in Physics from the University of Sidi Bel Abbes (1991-1996). He then pursued a M.Sc. in Solid State Physics (1998-2000), focusing on the electronic structure of BSb compounds using the FP-LAPW method. Zaoui continued his academic pursuit with a Ph.D. in Material Sciences (2000-2005), conducting groundbreaking research on TiCxN1−x, ZrxNb1−xC, and HfCxN1−x alloys through first-principles calculations. His early work established a foundation in ab-initio methods for studying the electronic structures of complex materials.

Professional Endeavors 🧑‍💼

Zaoui’s professional career includes roles as a Professor at the University of Sidi Bel Abbes, where he has been an influential faculty member since 2005. Additionally, he has held leadership roles, such as Team Leader and Director of various computational material science laboratories. His contributions extend beyond teaching, as he has also served in prominent positions such as Dean of the Faculty of Exact Sciences at the Djillali Liabes University and President of the Doctoral Formation Committee.

Contributions and Research Focus 🔬

Zaoui’s research focus spans a range of topics, with particular emphasis on computational physics, material science modeling, and condensed matter physics. His expertise lies in studying strongly correlated systems, magnetism, and superconductivity in atomic and condensed matter physics. His contributions in first-principles calculations have advanced the understanding of alloy properties, nanostructures, and electronic behaviors of various materials. Notable works include research on Hf3N4 and Zr3N4 compounds, as well as RE2Ni2Pb (R=Er, Ho), contributing to the advancement of material science through simulation and modeling techniques.

Impact and Influence 🌐

Zaoui’s impact in the field of computational material science is substantial, with significant influence in educating future generations of physicists. As a team leader, he has guided a range of research projects that continue to shape the field. His involvement in summer schools, conferences, and workshops on DFT, simulation methods, and materials modeling has contributed to international collaborations and the sharing of knowledge on an international scale. His research has shaped the academic landscape of materials science, particularly in Algeria and North Africa.

Academic Cites 📚

Zaoui’s academic works have gained significant recognition and have been cited in a wide array of material science journals. His research on Hf3N4 and Zr3N4 compounds, along with his contributions to optical properties of semiconductors and first-principles simulations, has been referenced widely in the scientific community. His work is highly regarded for its accuracy, innovation, and practical application in understanding the electronic structures of materials.

Research Skills 🧑‍🔬

Zaoui’s research is known for the depth of computational analysis and precision in applying first-principles calculations. He is highly skilled in using DFT, LDA+U methods, and ab-initio techniques to model complex material properties, from magnetism to superconductivity. His computational techniques allow for predictive modeling of material behaviors, an essential aspect in the development of new materials for various applications. Zaoui’s research is marked by his ability to bridge theory with practical outcomes, bringing computational insights into real-world scenarios.

Teaching Experience 📖

Zaoui has a rich and diverse teaching experience, spanning from general physics to specialized subjects like magnetism, thermodynamics, and nanotechnology. He has taught at both undergraduate and graduate levels, including at institutions like the Higher School of Computer Science of Sidi Bel Abbes. His teaching extends beyond the classroom, having led seminars, summer schools, and research conferences. His commitment to educating the next generation of physicists has made a lasting impact on the scientific community in Algeria.

Awards and Honors 🏆

While detailed awards are not listed in the provided information, Zaoui’s significant contributions to computational material science, his leadership in education, and his influential research undoubtedly position him for recognition in various academic circles. His leadership role in organizing scientific committees and overseeing doctoral training programs reflects his contribution to the academic excellence in material science.

Legacy and Future Contributions 🌱

Zaoui’s legacy is deeply rooted in his research, teaching, and leadership in computational materials science. His future contributions are expected to continue influencing the advancement of computational tools and material science innovations. With his focus on nanotechnology, superconductivity, and magnetism, Zaoui is well-positioned to make future breakthroughs in the understanding of next-generation materials. As his work continues to inspire the global research community, Zaoui’s legacy will likely shape the future of computational materials science and nanotechnology for many years to come.

Publications Top Notes

Impact of polymer binders on the aggregation modes of two-pieces CSH composites

  • Authors: J., Jia, Jiwei; A., Zaoui, Ali; W., Sekkal, Wassila
    Journal: Cement and Concrete Research, Year: 2025

Molecular modeling of clay minerals: A thirty-year journey and future perspectives

  • Authors: A., Zhou, Annan; J., Du, Jiapei; A., Zaoui, Ali; W., Sekkal, Wassila; M.S., Sahimi, Muhammad Syamim
    Journal: Coordination Chemistry Reviews, Year: 2025

Crystal structure and magnetic properties of lithium nitridoferrate: Density functional theory calculations

  • Authors: M.R., Aced, Mohammed Reda; N., Benayad, Nawel; F., Drief, F.; S., Kacimi, Salima; M., Djermouni, Mostefa
    Journal: Journal of Magnetism and Magnetic Materials, Year: 2025

Exploring superconducting signatures in high-pressure hydride compounds: An electronic-structure analysis

  • Authors: C., Mohammed Krarroubi; N., Benayad, Nawel; F., Benosman, Fayssal; S., Kacimi, Salima; A., Zaoui, Ali
    Journal: Physica C: Superconductivity and its Applications, Year: 2025

Influence of particle size distribution and normal pressure on railway ballast: A DEM approach

  • Authors: Z., Yan, Zhu; A., Zaoui, Ali; W., Sekkal, Wassila
    Journal: High-speed Railway, Year: 2025

Discrete-Element Method Study of the Effect of Ballast Layer Depth on the Performance of Railway Ballast Bed

  • Authors: Z., Yan, Zhu; A., Zaoui, Ali; W., Sekkal, Wassila
    Journal: International Journal of Geomechanics, Year: 2025

 

 

 

Quynh Anh Thi Nguyen | Computational Methods | Best Researcher Award

Dr. Quynh Anh Thi Nguyen | Computational Methods | Best Researcher Award

Researcher at University of Ulsan | South Korea

Quynh Anh Thi Nguyen is a doctoral researcher at the University of Ulsan (UOU), South Korea, where she is pursuing a Ph.D. in physics under the supervision of Prof. Sung Hyon “Sonny” Rhim. Her research primarily focuses on spintronics and first-principles calculations in tungsten (W) alloys. With a strong academic background, she has excelled in her field, maintaining a GPA of 4.17/4.5 during her doctoral studies and a similar academic achievement in her undergraduate studies.

👨‍🎓Profile

Google scholar

Scopus

🎓 Early Academic Pursuits

Nguyen’s academic journey began at Hanoi National University of Education (HNUE), Vietnam, where she completed her Bachelor’s degree in Physics with a thesis on the melting behavior of substitution alloys under pressure. During her undergraduate years (2013-2017), she was consistently ranked as an excellent student and earned recognition in scientific conferences. Her academic foundation set the stage for her future exploration in computational physics and materials science.

💼 Professional Endeavors

Since 2017, Nguyen has been pursuing her Doctoral degree at the University of Ulsan (UOU), South Korea. Under the mentorship of Prof. Sung Hyon Rhim, her research is centered on the study of spintronics in W alloys and the magnetic properties of Heusler compounds. She has delved into critical aspects of spin Hall conductivity, orbital Hall conductivity, and magnetism, contributing to the understanding of materials used in next-generation electronic devices like spintronic sensors and memory devices.

Contributions and Research Focus 🔬

Quynh Anh’s research mainly explores the Spin Hall conductivity and orbital Hall effects in various materials, including transition metals, Heusler compounds, and tetragonal alloys. Her work on spintronics—specifically related to the spin-orbit torque efficiency of materials like β-W heterojunctions—has led to several high-impact publications. One of her major contributions is the study of the spin Hall conductivity in W-Si alloys, which has significant implications for spintronic devices and energy-efficient electronics.

Her current research includes W-N alloys, and the impact of Ti substitution on β-W, both of which are preparing for publication.

Impact and Influence 🌍

Quynh Anh’s work is making a significant impact on the field of spintronics and material physics, especially with her first-principles calculations on the properties of W alloys. By exploring magnetism and conductivity in alloys, she is contributing to the development of advanced materials with better performance in electronics and magnetic devices. Her research aids in the creation of energy-efficient technologies and high-performance electronic components, positioning her as a leading researcher in her field.

Research Skills 💻

Quynh Anh possesses a strong set of technical skills that aid her research, including expertise in software such as Photoshop, Origin, Matlab, Python, and advanced tools like VASP, Wannier90, and OpenMx for computational physics. These skills have enabled her to conduct first-principles calculations and detailed simulations, giving her a deep understanding of material properties and quantum phenomena.

Awards and Honors 🏆

Quynh Anh’s work has been widely recognized:

  • Best Poster Award at the International Conference on Magnetic and Superconducting Materials (2018) in Seoul, Korea.
  • Multiple Excellent Student awards during her undergraduate years.
  • Third Prize at the Student Conference Science Research (2017).

These honors underscore her exceptional academic performance and research contributions.

Legacy and Future Contributions 🌟

With her expertise in spintronics and material physics, Quynh Anh is set to continue making groundbreaking contributions to the field of advanced materials. Her research on spin Hall conductivity, orbital Hall effects, and magnetism will likely pave the way for future innovations in energy-efficient electronics and next-generation magnetic devices. Quynh Anh’s legacy will undoubtedly inspire future scientists to explore the untapped potentials of transition metal alloys and spintronic materials, ensuring her lasting impact in the world of physics and material science.

Publications Top Notes

Ti-alloyed β-W heterojunctions exhibiting spin-orbit torque switching at a wide operating temperature range

  • Authors: J. Lee, Q. A. T. Nguyen, D. Kim, S. H. Rhim, Y. K. Kim
    Journal: Applied Surface Science
    Year: 2025

Synergetic Modulation of Electronic Properties of Cobalt Oxide via “Tb” Single Atom for Uphill Urea and Water Electrolysis

  • Authors: S. Ajmal, A. Rasheed, W. Sheng, G. Dastgeer, Q. A. T. Nguyen, P. Wang, …
    Journal: Advanced Materials
    Year: 2025

Unlocking electrocatalytic dynamics with anti-MXene borides monolayers for nitrate reduction

  • Authors: T. H. Ho, Q. A. T. Nguyen, B. T. T. Le, S. G. Kim, W. Q. Bui
    Journal: Applied Surface Science
    Year: 2024

Spin Hall Conductivity of W100-xSix Alloys in A15 Structure: A Comprehensive Study

  • Authors: Q. A. T. Nguyen, S. H. Rhim
    Journal: Journal of Magnetics
    Year: 2024

Orbital-engineered anomalous Hall conductivity in stable full Heusler compounds: a pathway to optimized spintronics

  • Authors: Q. A. T. Nguyen, T. H. Ho, S. G. Kim, A. Kumar, V. Q. Bui
    Journal: Journal of Materials Chemistry C
    Year: 2024

 

 

 

Radomira Lozeva | Computational Methods | Best Researcher Award-3369

Dr.Radomira Lozeva| Computational Methods | Best Researcher Award

Dr Radomira Lozeva CNRS

Professional Profiles

Publications

Conclusion

Given her extensive research experience, significant contributions to nuclear physics, leadership in experiments, successful mentorship, and active engagement in the scientific community, Radomira Lozeva is highly suitable for both the Research for Community Impact Award and the Best Research Award. Her innovative work and dedication to advancing the field make her a strong contender for these prestigious recognitions.

Amin G Davodi | Computational mechanics | Member

Mr. Amin G Davodi | Computational mechanics | Member

Teaching at Mazandaran Institute of Technology (Babol, Iran),

Amin Gholami Davodi is a versatile professional with expertise in structural and mechanical engineering, coupled with a keen interest in applied mathematics. Holding an M.Sc. in Civil Engineering with a focus on Structural Engineering, he has excelled in national concrete competitions and computer olympiads. A dedicated educator, he teaches at the Mazandaran Institute of Technology and has served as a teaching assistant at Babol University of Technology. A prolific researcher and reviewer for numerous prestigious journals, Davodi has conducted significant experimental research in polymer modified asphalt and concrete. With extensive job experience in construction management and structural analysis, he is a valued member of the Iran Construction Engineering Organization.

Professional Profiles:

Education

M.Sc., Civil Engineering – Structural Engineering, Shahrood University of Technology Dissertation Title: Evaluation behavior of semi-rigid connection of steel structure using ANSYS software Thesis Supervisor: Dr. Ali Keyhani and Dr. Ramin Amini B.Sc., Civil Engineering, University of Mazandaran, Babol, Iran

Experience

Member of Iran Construction Engineering Organization, 2009-Now Member of Civil Engineering Committee of Babol, Babol, Iran, 2009-Now (Structural design of around 100,000 square meter buildings) Project manager in building construction projects at CBorj Shomal Co., 2005-Now Site Manager in South Bypass of Babol and its overpasses, 2011-2018 Structural analysis and design of buildings, 2009-2018

Teaching Experiences

Teaching at Mazandaran Institute of Technology (Babol, Iran), 2011-Now Teaching Assistant (TA) Applied Mathematics (Dr. Davood Domiri Ganji) at Babol University of Technology, 2008-2011

Honors and Awards

Second position in National concrete competition ACI Iran branch (Concrete bridge), 2003 First position in National concrete competition (High strength concrete), 2004 Second position in National concrete competition (Concrete with predefined properties), 2004 Passed the first exam in Iran National Computer Olympiad, Iran, 1999

Research Focus:

Amin Gholami Davodi’s research predominantly focuses on nonlinear dynamics and mathematical modeling in various engineering fields. He has contributed extensively to analytical solutions for nonlinear oscillation systems and differential equations using innovative approaches such as the max-min method, homotopy analysis method, and exp-function method. His work spans across disciplines including structural engineering, mechanical engineering, and applied mathematics. Davodi’s research has practical implications in understanding complex phenomena in vibration systems, fluid flow, and heat transfer, with applications in engineering design, optimization, and analysis. Overall, his research underscores a deep commitment to advancing theoretical and computational methods in engineering sciences.

Publications

  1. Combined formal periodic wave-like and soliton-like solutions of the conformable Schrödinger-KdV equation using the (G`/G)-expansion technique, Publication: 2023.
  2. New optical solitons of double Sine-Gordon equation using exact solutions methodsPublication: 2023.
  3. Application of modified Mickens iteration procedure to a pendulum and the motion of a mass attached to a stretched elastic wire, Publication: 2023.
  4. Investigation for brownian motion of nonlinear thermal bioconvective SPF in a nanofluid utilizing AGM methodPublication: 2023.
  5. Effects of elasticity and cross-flow Reynolds on visco-elastic fluids across the ground and a porous elliptic plate, Publication: 2023.
  6. Impressive and accurate solutions to the generalized Fokas-Lenells model, Publication: 2022.
  7. Shear performance of polypropylene fiber reinforced high-strength self- compacting concrete beamsPublication: 2022.
  8. Importance of induced magnetic field and exponential heat source on convective flow of Casson fluid in a micro-channel via AGMPublication: 2022.
  9. Analysis of Strongly Non-linear Oscillators by Hes Improved Amplitude-Frequency FormulationPublication: 2022.
  10. New explicit solitons for the general modified fractional Degasperis–Procesi–Camassa–Holm equation with a truncated -fractional derivative, Publication: 2022.
.