Albert Munyeshyaka | High-Energy Astrophysics | Best Researcher Award

Dr. Albert Munyeshyaka | High-Energy Astrophysics | Best Researcher Award

University of Rwanda-College of Science and Technology | Rwanda

Albert Munyeshyaka is an exceptional researcher and educator in the field of Astrophysics and Cosmology. Currently pursuing his PhD at the Mbarara University of Science and Technology in Uganda, he is deeply focused on exploring advanced cosmological phenomena, particularly within the context of modified Gauss-Bonnet gravity. Albert’s academic journey spans across Rwanda, Uganda, and Poland, with numerous awards and scholarships showcasing his dedication to advancing the scientific community. His work on cosmic acceleration, large-scale structure formation, and the Hubble tension has earned him recognition among global astrophysics networks.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 📚

Albert’s academic journey began at Kinoni Primary School in Burera District and continued through Ecole Secondaire de Kirambo and Ecole des Science de Gisenyi, where he excelled in Physics, Chemistry, and Mathematics. This strong foundation led him to pursue a Bachelor’s degree in Physics at the University of Rwanda-College of Science and Technology, where he graduated with honors. This solid base in fundamental physics served as a stepping stone toward his later graduate and postgraduate research in Astrophysics at Mbarara University of Science and Technology, Uganda.

Professional Endeavors 💼

Albert’s professional experience includes a position as an Assistant Lecturer at the University of Rwanda, where he teaches undergraduate courses like Electricity and Magnetism for Geotechnical Engineering and Surveying and Geomatics Engineering students. He is also a Research Collaborator on multiple projects, contributing his expertise to projects such as Grant DVC-AAR506/2022. Albert’s collaborative efforts span across multiple esteemed institutions, demonstrating his ability to work effectively in interdisciplinary settings.

Contributions and Research Focus 🧑‍🔬

Albert’s research interests primarily focus on Astrophysics and Cosmology, with particular attention to the large-scale structure formation of the universe and the issues surrounding modified gravity theories. His doctoral research on modified Gauss-Bonnet gravity investigates the intricacies of cosmic acceleration and dark energy, while his work on Chaplygin gas cosmology and perturbation theory explores the fundamental forces that govern the universe. Albert’s contributions to Hubble tension and Sigma 8 are pushing the frontiers of cosmological theory, aiming to solve some of the most pressing challenges in modern physics.

Impact and Influence 🌍

Albert’s influence extends well beyond academia. Through his numerous publications in top-tier journals like the International Journal of Modern Physics and the European Physical Journal C, he is contributing to the understanding of cosmological phenomena and the fundamental laws of the universe. His active participation in international conferences such as the 5th Cosmology School in Krakow, Poland, and his involvement in international collaborations have allowed him to share knowledge and learn from leading figures in the field. Albert’s contributions are shaping future directions in cosmological research.

Research Skills and Expertise 🖥️

Albert’s computational and data analysis skills are one of his greatest assets. He is proficient in using advanced tools such as Maple, Pyplot, LATEX, and Jupyter Notebook for typesetting and data visualization. Additionally, his experience with Machine Learning, MCMC simulations, and MATLAB for data analysis enhances his ability to work on complex astrophysical simulations and data reduction. His work with TOPCAT and IRAF also exemplifies his technical abilities in handling astronomical data.

Teaching Experience 👨‍🏫

As an Assistant Lecturer at the University of Rwanda, Albert has demonstrated a strong commitment to teaching and mentoring the next generation of scientists. He has taught subjects such as Electricity and Magnetism, and his approach to teaching integrates theoretical understanding with practical application. His experience with Geotechnical Engineering and Surveying and Geomatics Engineering students highlights his ability to make complex subjects accessible and engaging.

Awards and Honors 🏆

Albert’s academic journey has been marked by several prestigious awards, including:

  • SIDA Scholarship (Swedish International Development Agency) for PhD studies at Mbarara University of Science and Technology.

  • Grant to attend the 5th Cosmology School in Krakow, Poland.

  • PhD Graduation scheduled for October 2024, with his Viva-Voce defense in May 2024.

  • EAARN Scholarship to pursue a Master’s degree in Astrophysics.

These accolades highlight Albert’s excellence and dedication to his field.

Legacy and Future Contributions 🌠

Albert Munyeshyaka’s career is still in its early stages, yet his research has already made a significant mark in the world of astrophysics. With his continued work in modified gravity theories and cosmological models, Albert is poised to make even more influential contributions in the coming years. His active participation in global scientific networks and his ongoing research projects, such as bulk viscous modified Chaplygin gas and matter power spectrum in modified Gauss-Bonnet gravity, will continue to shape our understanding of the universe and its fundamental laws. As he nears the completion of his PhD, his legacy as a leading researcher in cosmology is already being cemented, with expectations for future breakthroughs in both theoretical and observational physics.

Publications Top Notes

Perturbations with bulk viscosity in modified Chaplygin gas cosmology

  • Authors: Albert Munyeshyaka, Praveen Kumar Dhankar, Joseph Ntahompagaze
    Journal: International Journal of Geometric Methods in Modern Physics
    Year: 2025

On covariant perturbations with scalar field in modified Gauss–Bonnet gravity

  • Authors: Albert Munyeshyaka, Joseph Ntahompagaze, Tom Mutabazi, Manasse Mbonye
    Journal: The European Physical Journal C
    Year: 2024

On Chaplygin models in f(G) gravity

  • Authors: Twagirayezu, Fidele; Ayirwanda, Abraham; Munyeshyaka, Albert; Mukeshimana, Solange; Ntahompagaze, Joseph; Uwimbabazi, Leon Fidele Ruganzu
    Journal: International Journal of Modern Physics D
    Year: 2023

On covariant perturbations with scalar field in modified Gauss-Bonnet gravity

  • Authors: Albert Munyeshyaka, Joseph Ntahompagaze, Tom Mutabazi, Manasse R. Mbonye
    Journal: arXiv
    Year: 2023

On 1 + 3 covariant perturbations of the quasi-Newtonian spacetime in modified Gauss–Bonnet gravity

  • Authors: Albert Munyeshyaka, Joseph Ntahompagaze, Tom Mutabazi, Manasse R. Mbonye
    Journal: International Journal of Modern Physics D
    Year: 2023

 

Muhammad Danish Sultan | High energy physics | Best Researcher Award

Mr. Muhammad Danish Sultan | High energy physics | Best Researcher Award

Visiting Lecturer at Emerson University | Pakistan

Muhammad Danish Sultan is an emerging researcher and educator specializing in the field of Black Hole Physics. He is currently a Visiting Lecturer at Emerson University in Multan, Pakistan, where he shares his knowledge and expertise with aspiring students. His academic journey has been marked by deep theoretical exploration into the nature of black holes, particularly focusing on their thermodynamics, Hawking evaporation, acceleration processes, and shadow images. Sultan’s research is known for its innovative approach, leading to numerous published works in high-impact journals.

👨‍🎓Profile

Scopus

Early Academic Pursuits 🎓

Sultan’s academic foundation was laid during his BS in Physics at Govt. College University Faisalabad, where he developed a strong understanding of core physics principles. He further enhanced his academic depth with a Master’s degree (MS) in Black Holes Physics from Riphah International University, where his specialization included complex phenomena like Hawking radiation and black hole accretion. Sultan also pursued an MA in Education to bridge his passion for science with teaching methodology, solidifying his commitment to both research and education.

Professional Endeavors 📚

Sultan’s professional trajectory reflects a profound commitment to education and research. He began his teaching career as a Physics Teacher at Ravi College in Mian Channu (2021-2022), where he imparted knowledge on fundamental physics concepts. In his current role as a Visiting Lecturer at Emerson University Multan, he is recognized for his ability to make complex topics in theoretical physics accessible and engaging for students. His focus on innovative teaching methods enhances students’ learning experiences, positioning him as a dynamic figure in the academic community.

Contributions and Research Focus 🔬

Sultan’s research contributions in black hole physics have been extensive and groundbreaking. He has co-authored numerous papers on subjects like the Hawking evaporation of black holes, thermodynamics of black holes, and greybody factors. His research on Kerr-Newman-Kasuya black holes and Charged Ads black holes has been instrumental in broadening the understanding of phase transitions, stability analysis, and the impact of modified gravity on black holes. His focus is primarily on understanding advanced theoretical phenomena in black hole physics, contributing valuable insights into how gravity theories affect accretion disks, quasinormal modes, and shadow images of black holes.

Impact and Influence 🌍

Sultan’s research publications have made a significant impact in the field of astrophysics, especially within high-energy astrophysics. With contributions to journals such as Physica Scripta, Nuclear Physics B, and High Energy Astrophysics, his work is cited by many in the theoretical physics community. Sultan’s studies on the optical aspects of black holes, along with the dynamic stability of charged dilatonic black holes, reflect his deep understanding and innovative approach to black hole dynamics. His work influences not only theoretical physics but also astronomical observations in terms of black hole imaging and radiation.

Academic Citations 📑

Sultan’s work has already garnered attention in the scientific community, with multiple papers published in high-impact journals and several others under submission. His publications on topics like Hawking Evaporation, Accretion Disk Dynamics, and Greybody Factors are frequently cited by researchers in the fields of general relativity and cosmology. His comprehensive studies on the thermodynamic geometry of black holes have become an essential reference for anyone working in the domain of astrophysical research.

Research Skills 🧑‍🔬

Sultan is well-versed in utilizing advanced computational tools for his research, including Mathematica, Maple, and WinEdt. His proficiency in these tools has enabled him to perform complex calculations, simulations, and data analysis, which are crucial for modeling phenomena such as black hole accretion and shadow images. His ability to engage with complex theories and translate them into computational results further strengthens his research.

Teaching Experience 📚

In addition to his research, Sultan’s teaching career has played a vital role in shaping his professional journey. He has taught undergraduate and postgraduate students at Emerson University and Ravi College, focusing on general physics, theoretical physics, and astrophysics. His teaching philosophy is centered on promoting active learning and fostering critical thinking in students. Sultan’s commitment to pedagogical development is evident through his participation in various workshops, such as Classroom Management and Computational Tools in Research.

Awards and Honors 🏅

Throughout his academic career, Sultan has been recognized for his outstanding contributions to both teaching and research. He has received Certificates of Appreciation for his participation in several prestigious workshops, including those on Nanotechnology Innovations, Classroom Management, and Computational Research Tools. These accolades reflect his dedication to enhancing both his research skills and his teaching effectiveness.

Legacy and Future Contributions 🔮

Muhammad Danish Sultan’s career is marked by his growing influence in the realm of black hole physics and astrophysics. With a solid foundation in both theoretical research and education, Sultan is poised to leave a lasting legacy in the scientific community. His future contributions are likely to push the boundaries of gravitational physics, and his work in emerging gravity theories could lead to new theoretical models and observational technologies in astrophysics. His dedication to research, teaching, and professional development ensures that he will continue to have a significant impact in the academic world, influencing both future researchers and students.

Publications Top Notes

Analysis of Hawking evaporation, shadows, and thermodynamic geometry of black holes within the Einstein SU(N) non-linear sigma model

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan, Asifa Ashraf, Awatef Abidi, Ali M. Mubaraki
    Journal: Journal of High Energy Astrophysics
    Year: 2025

Effect of Modified Gravity in the Hawking Evaporation of Charged Ads Black Hole

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan et al.
    Journal: Physica Scripta
    Year: 2023

Images and stability of black hole with cloud of strings and quintessence in EGUP framework

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan et al.
    Journal: Nuclear Physics B
    Year: 2024

Optical Aspects of Born-Infeld BTZ Black Holes in Massive Gravity

  • Authors: Muhammad Danish Sultan, Shahid Chaudhary et al.
    Journal: Physica Scripta
    Year: 2024

Greybody Factor and Accretion Disk Around Regular Black Holes in Verlinde Emergent Gravity

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan et al.
    Journal: High Energy Astrophysics
    Year: 2025

Rabia Saleem | General Relativity | Member

Assist Prof Dr. Rabia Saleem | General Relativity | Member

PHD at University of the Punjab, Pakistan

Dr. Rabia Saleem, an esteemed HEC Approved Ph.D. Supervisor, is a prominent figure in mathematics, specializing in General Relativity. With 59 research papers in ISI impact factor journals and supervision of 17 MS students, her contributions are substantial. She has taught 50 courses at COMSATS University Islamabad, Lahore Campus. Rabia completed her Ph.D. in General Relativity from the University of the Punjab, Lahore, and has received numerous accolades, including the Indigenous Ph.D. Fellowship and a Research Productivity Award. Her administrative roles include organizing international conferences and serving on committees. Rabia’s expertise and leadership make her a vital asset to the academic community.

Professional Profiles:

Education

Ph.D. in General Relativity (2012-2015) University: University of the Punjab, Lahore Supervisor: Prof. Dr. Muhammad Sharif Thesis Title: “Some Inflationary and Cosmic Issues in General Relativity”

Awards, Scholarships, and Honors:

Indigenous Ph.D. Fellowship, Higher Education Commission, Pakistan (2012-2015) Research Productivity Award (2015-2017) Travel grant from PHEC to attend V Italian-Pakistani Workshop on Relativistic Astrophysics, MXP, Italy (2016) Selected as a Young TWAS Affiliate from Pakistan (2021)

Practical Exposure

Assistant Professor, Department of Mathematics, Govt. College University, Lahore (Jan. 2016 to Jan. 2017) Assistant Professor, Department of Mathematics, COMSATS University Islamabad, Lahore Campus (Feb. 2017 to Present)

Administrative and Social Experience

Organizer of International Conference on Relativistic Astrophysics, 2015 Member of Admission Committee in COMSATS University Islamabad, Lahore Campus (2017-Present) Organizer of 2nd International Conference on Recent Advances in Applied Mathematics, COMSATS University Islamabad, Lahore Campus (2019) Member of Lindau Alumni Network (2019) Lindau Alumni Peer Reviewer (2020) Member of International Research Conference Committee (2021)

Research Focus:

The research focus of R. Saleem appears to be primarily centered around various aspects of theoretical cosmology and gravitational physics. Their work encompasses topics such as warm inflationary universe models, exact wormhole solutions, compact stars, dark energy models, and gravitational theories like f(T, T) gravity. They explore diverse phenomena like inflationary dynamics, cosmological gases, anisotropic models, and the effects of viscous pressure on cosmological evolution. Saleem’s research also delves into interdisciplinary areas, including electrochemical properties of nanomaterials for supercapacitors. Overall, their work contributes significantly to understanding the fundamental aspects of the universe and its evolution through theoretical frameworks and observational implications.

Publications 

  1. Interior solutions of compact stars in f (T, T) gravity under Karmarkar condition, cited by: 24, Publication date: 2020.
  2. The optical appearance of charged four-dimensional Gauss–Bonnet black hole with strings cloud and non-commutative geometry surrounded by various accretions profilescited by: 18, Publication date: 2023.
  3. Confronting the warm vector inflation in Rastall theory of gravity with Planck 2018 datacited by: 17, Publication date: 2020.
  4. Physical aspects of anisotropic compact stars in gravity with off diagonal tetradcited by: 12, Publication date: 2021.
  5. Dynamical study of interacting Ricci dark energy model using Chevallier-Polarsky-Lindertype parametrizationcited by: 9, Publication date: 2020.
  6. Anisotropic spherical solutions via EGD using isotropic Durgapal–Fuloria modelcited by: 8, Publication date: 2021.
  7. Cosmological inflation in f (X) gravity theorycited by: 8, Publication date: 2019.
  8. Exact wormholes solutions without exotic matter in  gravitycited by: 34, Publication date: 2019.
  9. Electromagnetic field and dark dynamical scalars for spherical systemscited by: 11, Publication date: 2019.
  10. Synthesis, characterization and electrochemical properties of α-MnO2 nanowires as electrode material for supercapacitorscited by: 32, Publication date: 2018.

 

.

Sunil Kumar Maurya | The Relativity theory | Member

Assoc Prof Dr. Sunil Kumar Maurya | The Relativity theory | Member

PHD at IIT Roorkee, India

Dr. Sunil Kumar Maurya is an Associate Professor and Assistant Dean for Graduate Studies and Research at the University of Nizwa, Oman. With a Ph.D. in Mathematics from IIT Roorkee, India, his expertise lies in Differential Equations, Mathematical Physics, and General Relativity. He has taught a wide range of courses and supervised numerous graduation projects and international Ph.D. students. Dr. Maurya has presented and attended conferences globally, contributing significantly to research in cosmology, astrophysics, and modified gravity theories. With over 3955 Google Scholar citations, he continues to advance the field through extensive publications and funded research projects.

Professional Profiles:

Academic Qualifications

Ph.D. in Mathematics, IIT Roorkee – India, March 2013 M.Sc. in Mathematics, BHU – India, 2008 B.Sc. in Mathematics and Physics, Lucknow University – India, June 2006

Position/Designation: Assistant Dean for Graduate Studies and Research, and Associate Professor Department: Department of Mathematical and Physical Sciences College: Arts and Sciences University: University of Nizwa, Sultanate of Oman

Research interests:

Differential Equations, Similarity Transformations Method, Exact Solutions of Einstein’s Field Equations, Mathematical Physics, Applied Mathematics, General Relativity and Cosmology, Modelling of Compact Stars, Astronomy and Astrophysics, Wormholes, Modified Theory of Gravity, Gravitational Decoupling.

Research Projects

Title: The Astrophysical and Cosmological Implications: From Dark Energy to Modified Theory of Gravity Application Date: December 2019 Amount: 19,504 USD Status: Completed in September 2022 as a Principal Investigator

Research Focus:

Dr. Sunil Kumar Maurya’s research primarily focuses on theoretical astrophysics and general relativity, with a specific emphasis on anisotropic models for compact stars. Through various publications in reputable journals like The European Physical Journal C and Physical Review D, he has extensively explored the properties and behaviors of anisotropic compact objects, investigating their structural characteristics and gravitational effects. Dr. Maurya’s work delves into the intricate interplay between matter and geometry within these compact stellar systems, contributing significantly to our understanding of relativistic astrophysics and providing insights into the fundamental nature of compact stars.

Publications 

  1. Anisotropic models for compact stars, cited by: 162, Publication date: 2015.
  2. Study of anisotropic strange stars in  gravity: An embedding approach under the simplest linear functional of the matter-geometry coupling, cited by: 156, Publication date: 2019.
  3. Generalised model for anisotropic compact starscited by: 145, Publication date: 2016.
  4. A new exact anisotropic solution of embedding class one, cited by: 139, Publication date: 2016.
  5. Anisotropic compact stars in the Buchdahl model: A comprehensive study, cited by: 133, Publication date: 2019.
  6. Charged anisotropic compact star in f (R, T) gravity: A minimal geometric deformation gravitational decoupling approach, cited by: 126, Publication date: 2020.
  7. Generalized relativistic anisotropic compact star models by gravitational decoupling, cited by: 117, Publication date: 2019.
  8. Class I approach as MGD generatorcited by: 102, Publication date: 2020.
  9. Gravitational decoupling minimal geometric deformation model in modified f (R, T) gravity theory, cited by: 97, Publication date: 2020.
  10. Anisotropic relativistic fluid spheres: an embedding class I approach, cited by: 82, Publication date: 2019.

 

 

 

.