Gavin DeBrun | Computational Methods | Best Researcher Award

Mr. Gavin DeBrun | Computational Methods | Best Researcher Award

R&D Staff, Sandia National Laboratories, United States

Gavin DeBrun is a dynamic and multidisciplinary researcher with a Bachelor of Science in Engineering Physics from the University of Illinois at Urbana-Champaign, supplemented by minors in Computer Science, Statistics, and Mathematics. His diverse research spans computational materials science, atmospheric modeling, nuclear corrosion safety, and machine learning applications. Gavin’s work includes prestigious appointments at Sandia National Laboratories, and his publications demonstrate active contribution to materials innovation, energy systems, and algorithm design. He is recognized for blending advanced simulation, data analysis, and scientific software development to solve complex real-world problems with academic rigor and technical depth.

👨‍🎓Profile

Google scholar

ORCID

📚 Early Academic Pursuits

From his undergraduate years, Gavin pursued an intensive and well-rounded curriculum combining physics, computer science, statistics, and math. At the University of Illinois, he rapidly immersed himself in research labs across departments, from atmospheric science to applied physics. His early work on storm evolution using radar data and split ventilator circuit designs during COVID-19 set the stage for a career shaped by both scientific creativity and societal impact. By sophomore year, he was already engaged in publication-worthy projects, a rare distinction that reflects both intellectual curiosity and a strong research aptitude at an early stage.

🧪 Professional Endeavors

Gavin has held research roles in seven different labs, including Sandia National Laboratories, where he currently develops molecular dynamics simulations and machine learning classification pipelines. His career reflects extraordinary versatility ranging from photovoltaic optimization algorithms to nuclear fuel canister corrosion studies using electrochemical impedance spectroscopy. Notably, he contributed to the Geubelle Computational Mechanics Group, refining finite element models for polymer composites. His consistent engagement with cross-disciplinary teams and national laboratories highlights not just technical skill, but also adaptability, collaboration, and a genuine drive to explore science at the interface of computation and engineering.

🧭 Contributions and Research Focus

Gavin’s research focus is deeply rooted in computational physics and materials engineering, with contributions spanning hydrogen diffusion, quantum computing emulation, and additive manufacturing. He has co-authored peer-reviewed papers on topics like frontal polymerization, corrosion-resistant coatings, and solid-state battery simulations. His work combines physics-based modeling with modern data-driven techniques, such as ML classifiers and simulation automation. Gavin excels in building software tools, running large-scale simulations, and validating models using real-world experimental data, positioning himself at the cutting edge of next-generation material innovation and sustainable energy solutions.

🌍 Impact and Influence

Gavin’s influence is evident in the multidisciplinary breadth of his projects and the applied nature of his research, which addresses critical challenges in renewable energy, quantum computing, and nuclear safety. He has contributed to innovations that enhance solar power efficiency, extend the life of nuclear infrastructure, and optimize advanced manufacturing methods. His efforts are not confined to academia several works have national implications, especially within energy and defense research sectors. His publication record and national lab affiliations showcase a rising research leader, poised to impact both fundamental science and applied technology development.

📄 Academic Citations

Gavin is a co-author of multiple peer-reviewed papers and conference proceedings, with publications in Composite Structures, Composites Part A, and Coatings, among others. His research has earned citations across materials science, energy systems, and applied physics communities. Most notably, his paper on irradiation effects in corrosion-resistant coatings (Coatings, 2025) and his work on frontal polymerization have gained early recognition. He has presented at prestigious venues like IMECE 2023 and ASC 2023, signaling his growing academic presence. As he continues publishing and expanding collaborations, his citation index is expected to grow rapidly in coming years.

🛠️ Research Skills

Gavin possesses advanced programming skills (C++, Python, SQL, R) and experience with scientific computing tools like FEniCS, PyTorch, NumPy, and ParaView. His expertise in data analysis, machine learning, and simulation modeling is supported by fluency in parallel programming, HPC environments, and scientific visualization. He has built quantum emulators, designed Monte Carlo simulations for hydrogen diffusion, and led data integration across weather models and radar systems. His blend of computational fluency, physical intuition, and data science methodologies equips him with a rare skillset ideal for solving high-dimensional, multidisciplinary problems.

🔮 Legacy and Future Contributions

Gavin DeBrun is building a legacy rooted in scientific versatility and computational innovation. His work spans multiple high-impact domains, and he consistently contributes to solving some of today’s most pressing energy and materials challenges. In the near future, he is poised to become a thought leader in computational materials science, with strong potential for Ph.D. pursuits, interdisciplinary publications, and industry collaborations. As an innovator, educator, and systems thinker, his contributions will likely influence the development of resilient energy systems, smart materials, and next-generation simulation tools for years to come.

Publications Top Notes

Multiscale modeling of frontal polymerization in laminated and woven composites
  • Authors: Michael Zakoworotny, Gavin DeBrun, Sameh H. Tawfick, Jeffery W. Baur, Philippe H. Geubelle
    Journal: Composite Structures
    Year: 2025
Reactive extrusion of frontally polymerizing continuous carbon fiber reinforced polymer composites
  • Authors: Nadim S. Hmeidat, Michael Zakoworotny, Yun Seong Kim, Thien B. Le, Gavin DeBrun, Rohan Shah, Jacob J. Lessard, Jeffery S. Moore, Jeffery W. Baur, Philippe H. Geubelle
    Journal: Composites Part A: Applied Science and Manufacturing
    Year: 2025
Impact of Irradiation on Corrosion Performance of Hybrid Organic/Inorganic Coatings on Austenitic Stainless Steel
  • Authors: Natalie Click, Andrew Knight, Brendan Nation, Makeila Maguire, Samay Verma, Gavin DeBrun, Tyler McCready, Adam Goff, Audrey Rotert, Don Hanson
    Journal: Coatings
    Year: 2025
Additive Manufacturing of Frontally-Polymerizable Continuous Carbon Fiber Tow-Based Composites
  • Authors: Nadim S. Hmeidat, Michael Zakoworotny, Nil A. Parikh, Thien B. Le, Pranjal Agrawal, Gavin DeBrun, Jeffery Baur, Philippe H. Geubelle, Sameh H. Tawfick, Nancy R. Sottos
    Journal: Proceedings of the American Society for Composites (ASC)
    Year: 2023

Marilyn Bishop | Theoretical Advances | Best Researcher Award

Dr. Marilyn Bishop | Theoretical Advances | Best Researcher Award

Associate Professor at Virginia Commonwealth University | United States

Marilyn F. Bishop is a tenured Associate Professor of Physics at Virginia Commonwealth University since 1986. She earned her Ph.D. in Physics from the University of California, Irvine in 1976. With a strong foundation in mathematics and physics, she has developed a multifaceted academic career blending theoretical physics with biophysical research. Bishop’s extensive work spans decades, contributing to both scientific understanding and educational advancements, making her a respected figure in physics education and research communities.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Bishop’s academic journey began with dual Bachelor’s degrees in Physics (1971) and Mathematics (1972) from UC Irvine, followed by a Master’s (1973) and Ph.D. in Physics (1976) from the same institution. She started as a Research Assistant at UC Irvine, honing her skills in theoretical physics. Early postdoctoral work at Purdue University and a visiting scientist role at Technische Universität München reflect her deep engagement with surface physics and condensed matter topics, establishing a strong foundation for her future research and teaching career.

💼 Professional Endeavors

Since 1986, Marilyn Bishop has been a key faculty member at VCU, earning tenure in 1990. Her earlier roles include Assistant Professor at Drexel University and consulting for Purdue University’s Physics Department. She has also been a Fellow at the Center for the Study of Biological Complexity, integrating physics with biological applications. Her professional work balances academic research, collaborative projects, and consulting, emphasizing both theoretical and computational physics, alongside mentoring students and contributing to interdisciplinary scientific communities.

🔬 Contributions and Research Focus

Bishop’s research emphasizes surface polaritons, spatially dispersive materials, and light scattering phenomena, particularly relating to biophysical systems like sickle hemoglobin polymerization. She has published extensively on surface exciton polaritons, Raman scattering, and spin susceptibility in electron gases. Her interdisciplinary work bridges physics and biology, supported by NIH grants focused on computational modeling of cardiopulmonary physiology. Her innovative use of photonic band structure methods to study biological tissues, such as the eye’s cornea, marks a notable contribution to biophysics.

🌟 Impact and Influence

Marilyn Bishop’s impact is seen through her numerous publications, presentations, and invited talks at major physics conferences like the APS March Meetings. She has helped shape understanding in condensed matter physics and biophysics, fostering collaboration between physics and biological sciences. Her research has influenced studies on electron interactions, spin susceptibility, and optical properties of materials, inspiring new computational approaches. She is a mentor to students and colleagues, advancing physics education and encouraging interdisciplinary exploration.

📖 Academic Cites

Her scholarly work has been cited widely in condensed matter physics and biophysics, particularly her studies on surface polaritons and electron gas spin susceptibility. Papers published in prestigious journals like Physical Review B and Physical Review Letters demonstrate her research rigor and relevance. Participation in workshops such as the NSF’s Materials Theory and her role in presenting at over 50 conferences have further solidified her standing in the scientific community, influencing ongoing research in theoretical and applied physics.

🧠 Research Skills

Marilyn Bishop possesses advanced skills in theoretical modeling, computational physics, and light scattering techniques. She developed Mathematica programs for physics visualization and data analysis, pioneering online homework systems in physics education. Her expertise extends to Monte Carlo simulations, photonic band structure calculations, and modeling complex biological systems. Her research methodology combines rigorous mathematical frameworks with computational tools to explore physical phenomena at both micro and macro scales, enhancing interdisciplinary research capabilities.

👩‍🏫 Teaching Experience

Bishop has a rich teaching portfolio, delivering courses from introductory physics labs to advanced graduate seminars in quantum mechanics, electromagnetism, and theoretical mechanics. She created new courses like Physics of Sound and Music and integrated Mathematica visualization tools into the curriculum. Known for developing online homework and detailed instructional materials, Bishop has mentored numerous students and collaborated with colleagues to enhance physics pedagogy at VCU, combining research insights with effective teaching strategies.

🏆 Awards and Honors

Her accolades include the Drexel University Research Scholar Award, membership in Sigma Xi, and the VCU SEED Award (2022-2023) for innovative research proposals. She also earned recognition early in her career with the First Place in the Writer’s Division of the Advertiser-Press Awards (1969). Bishop has secured multiple NIH grants supporting research and education, as well as industry funding, underscoring her research’s impact and her commitment to scientific excellence and mentorship.

🔮 Legacy and Future Contributions

Marilyn F. Bishop’s legacy lies in her interdisciplinary research bridging physics and biology, innovative teaching methods, and mentorship. Her ongoing work on sickle-cell hemoglobin structure and computational biophysics continues to push boundaries. As a tenured professor and research fellow, she is poised to influence future generations through continued scholarship, course development, and collaborative projects. Her integration of computational tools and physical theory sets a strong foundation for future scientific and educational advancements.

Publications Top Notes

Entropies of the Classical Dimer Model

  • Authors: John C. Baker, Marilyn F. Bishop, Tom McMullen
    Journal: Entropy
    Year: 2025

An α-chain modification rivals the effect of fetal hemoglobin in retarding the rate of sickle cell fiber formation

  • Authors: E.H. Worth, M.K. Fugate, K.C. Grasty, P.J. Loll, Marilyn F. Bishop, F.A. Ferrone
    Journal: Scientific Reports
    Year: 2023

Entropy of Charge Inversion in DNA including One-Loop Fluctuations

  • Authors: M.D. Sievert, Marilyn F. Bishop, Tom McMullen
    Journal: Entropy
    Year: 2023

Superlinear increase of photoluminescence with excitation intensity in Zn-doped GaN

  • Authors: M.A. Reshchikov, A.J. Olsen, Marilyn F. Bishop, Tom McMullen
    Journal: Physical Review B – Condensed Matter and Materials Physics
    Year: 2013

The Sickle-Cell Fiber Revisited

  • Authors: Marilyn F. Bishop, Frank A. Ferrone
    Journal: Biomolecules
    Year: 2023