Xiang-Gui Li | Computational Methods | Best Researcher Award

Prof. Xiang-Gui Li | Computational Methods | Best Researcher Award

Chair Professor at Beijing Information Science and Technology University | China

Li Xiang-Gui is a distinguished academic and researcher in computational and applied physics, currently serving as a Chair Professor at the School of Applied Science, Beijing Information Science and Technology University. With over three decades of experience, he is known for his influential work in quantum physics, numerical analysis, and hydrodynamic simulation, underpinned by a deep mathematical foundation.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Li began his academic journey with a B.S. and M.S. in Applied Mathematics from the Beijing Institute of Technology, graduating with distinction. His strong interest in mathematical modeling and physical systems led him to pursue a Ph.D. at the Chinese Academy of Engineering and Physics, specializing in Applied Physics and Computational Mathematics—a critical step that shaped his interdisciplinary approach to research.

🧑‍🔬 Professional Endeavors

Dr. Li’s career spans prestigious institutions and vital academic roles. From 1989 to 2004, he worked as a Lecturer and Associate Professor at the University of Petroleum, followed by his role as Associate Professor at Beijing Information Technology Institute. Since 2004, he has been with Beijing Information Science and Technology University, where he served as Professor, Dean, and now as Chair Professor, contributing to both academic development and institutional growth.

🔬 Contributions and Research Focus

Dr. Li’s research covers a broad spectrum including computational physics, quantum theory, numerical simulations, and hydrodynamics. His work often bridges theoretical modeling and real-world applications, notably in fields involving complex physical systems and energy research. His expertise in numerical analysis plays a vital role in solving high-dimensional, non-linear physical problems through computational approaches.

🌍 Impact and Influence

With a career deeply rooted in education, leadership, and advanced research, Dr. Li has influenced numerous students, academic programs, and scientific advancements. His work has applications in petroleum research, defense simulations, and quantum mechanics, impacting both academia and industry. His long tenure as a dean and academic leader illustrates his capability to shape research culture and foster innovation.

📚 Academic Cites and Recognition

Though specific citation metrics are not listed, Dr. Li’s national recognition, such as the Third Prize for Outstanding Research from the National Petroleum Corporation of China (1998), attests to the quality and societal impact of his research. His Ph.D. from a top-tier national research academy further adds to his credibility as a leading scientist in his field.

🧪 Research Skills

Dr. Li possesses deep expertise in computational modeling, quantum simulation, numerical methods and algorithms, and hydrodynamic code development. These advanced skills empower him to address multi-scale and multi-physics problems across both academic and applied research environments. By leveraging his strong foundation in mathematics, he effectively utilizes it as a powerful tool for scientific discovery, enabling precise simulation and analysis of complex physical systems.

👨‍🏫 Teaching Experience

Over his long academic career, Dr. Li has mentored numerous undergraduate, postgraduate, and doctoral students. His contributions as a professor and former dean reflect his dedication to education, curriculum development, and academic mentorship in the fields of applied mathematics and physics.

🏅 Awards and Honors

Dr. Li was awarded the Third Prize for Outstanding Research by the National Petroleum Corporation of China in 1998, a recognition of his exceptional research contributions with practical industrial value. This award marks him as a nationally recognized expert in simulation-based research.

🌟 Legacy and Future Contributions

As a Chair Professor and senior academic leader, Dr. Li is expected to continue shaping the future of computational physics and scientific education in China. With his deep foundation in theory and extensive experience, his legacy lies not only in his research output, but also in his institutional leadership and mentorship of the next generation of scientists.

Publications Top Notes

The Energy-Diminishing Weak Galerkin Finite Element Method for the Computation of Ground State and Excited States in Bose-Einstein Condensates

  • Authors: L. Yang, X. Li (Xianggui Li), W. Yan, R. Zhang
    Journal: Journal of Computational Physics
    Year: 2025

High-Order Numerical Methods with Mass and Energy Conservation for Spin–Orbit-Coupled Bose–Einstein Condensates

  • Authors: Xiang-Gui Li, Shu-Cun Li
    Journal: International Journal of Computer Mathematics
    Year: 2021

High-Order Conservative Schemes for the Nonlinear Dirac Equation

  • Authors: Shu-Cun Li, Xiang-Gui Li
    Journal: International Journal of Computer Mathematics
    Year: 2020

Self-Organization of Ultra-Thin Uranium Film

  • Authors: X. Li, S. Li, M. Li, M. Zhou, F. Zheng, P. Zhang
    Journal: Physics Letters A: General, Atomic and Solid State Physics
    Year: 2019

High-Order Compact Methods for the Nonlinear Dirac Equation

  • Authors: S.-C. Li, X.-G. Li
    Journal: Computational and Applied Mathematics
    Year: 2018

 

Muhammad Yar Khan | Computational Methods | Best Researcher Award

Assoc. Prof. Dr. Muhammad Yar Khan | Computational Methods | Best Researcher Award

Associate Professor at Qilu institute of Technology | China

Dr. Hafiz Muhammad Yar Khan is an accomplished Materials Scientist and Associate Professor in Physics, with an extensive background in Density Functional Theory (DFT) Materials Modeling. He completed his Ph.D. in Materials Science Engineering at Zhejiang University, China (2023), which is ranked 41st in the QS World University Rankings (2022). His research is focused on novel 2D materials, energy storage materials, and the optical and magnetic properties of advanced materials, with significant contributions to the fields of spintronics, energy storage, and 2D magnetic materials.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Khan’s academic journey began with a Master of Science in Physics (M. Phil) from Hazara University Mansehra, Pakistan, in 2011, where he developed his passion for solid-state physics and computational material science. His dissertation focused on the first-principles study of perovskite-type oxides, laying the foundation for his later work in computational materials research. His focus on quantum mechanics, electrodynamics, and applied research techniques during his M.S. equipped him with a solid theoretical and experimental base.

Professional Endeavors 💼

Dr. Khan has held various teaching and administrative roles across prominent institutions in both Pakistan and China. His career includes serving as Lecturer in Physics at Kohat University of Science and Technology and The University of Haripur, Pakistan. His current position as Associate Professor at Qilu Institute of Technology, China, reflects his rising prominence in academia. Dr. Khan has also contributed to academic committees, such as being a member of the Academic Council at Kohat University and organizing events like sports day and international cultural day, showing his leadership in academic and extracurricular spheres.

Contributions and Research Focus 🔬

Dr. Khan’s research spans several cutting-edge areas in materials science. His Ph.D. dissertation on “First-Principles Study of Tuning Magnetic and Optical Properties of Novel 2D-Materials” focuses on materials such as transition metal carbon trichalcogenides and 2D magnetic materials. He has also explored energy storage technologies, such as Na and Li-ion batteries, providing insights into anode and cathode materials. His work also delves into optoelectronics and spintronics devices, underscoring his interdisciplinary approach.

Notable research topics include:

  • Magnetic and optical properties of 2D materials.

  • Energy storage materials (batteries, cathodes, and anodes).

  • Spintronics and optoelectronics for device applications.

Impact and Influence 🌍

Dr. Khan’s research has had significant implications in both academia and industry, especially in 2D materials and energy storage technologies. His publications in prestigious journals like Journal of Superconductivity and Novel Magnetism, Physics Letter A, and Nanoscale demonstrate his ability to contribute to high-impact research. His work is highly regarded in the scientific community, and he has collaborated with leading universities and institutions such as the New Jersey Institute of Technology (NJIT), Quaid-i-Azam University, University of Ulsan, and King Saud University.

His influence extends beyond materials science into academic collaboration, where he serves as a bridge between global research hubs in Pakistan, China, South Korea, and Saudi Arabia.

Research Skills 🧠

Dr. Khan is proficient in various computational software critical to materials science research, including:

  • WIEN2K

  • VASP

  • FLAPW

His ability to independently formulate research questions, conduct empirical research, and analyze data systematically has been key to his success. His first-principles approach has made him a leading figure in DFT-based materials modeling and theoretical materials science.

Teaching Experience 🍎

Dr. Khan has taught a variety of physics courses at undergraduate and postgraduate levels. He has mentored students in subjects such as Quantum Mechanics, Solid-State Physics, and Electrodynamics. He has also demonstrated his administrative skills in his role as Assistant Manager ORIC and member of the departmental admission committee, helping shape the academic landscape at institutions like Kohat University of Science and Technology and The University of Haripur. His teaching philosophy emphasizes the importance of research-driven education, encouraging students to engage with cutting-edge topics in material science and computational physics.

Awards and Honors 🏅

Dr. Khan has been recognized for his academic achievements with prestigious scholarships and fellowships, including:

  • Chinese Government Scholarship for his Ph.D. studies.

  • Brain Korea 21 (BK21) Fellowship by the Korean Government.

  • Pioneer Research Center Program through the National Research Foundation of Korea.

These awards underscore his commitment to academic excellence and his ability to secure competitive funding for his research endeavors.

Legacy and Future Contributions 🌟

Dr. Khan’s legacy is built on a solid foundation of innovative research, interdisciplinary collaborations, and a commitment to teaching. His future contributions are poised to make an impact not only in materials science but also in the energy sector, with further exploration into battery technologies, spintronics, and 2D materials. His ongoing work on defect-engineered materials and multiferroic hetero-structures is expected to push the boundaries of materials science in the coming years.

Publications Top Notes

“Computational insights into optoelectronic and magnetic properties of V(III)-doped GaN”

  • Authors: Muhammad Sheraz Khan, Muhammad Ikram, Li-Jie Shi, Bingsuo Zou, Hamid Ullah, Muhammad Yar Khan
    Journal: Journal of Solid-State Chemistry
    Year: 2021

“A highly selective nickel-aluminum layered double hydroxide nanostructures based electrochemical sensor for detection of pentachlorophenol”

  • Authors: Khan, Mir Mehran, Huma Shaikh, Abdullah Al Souwaileh, Muhammad Yar Khan, Madeeha Batool, Saima Q. Memon, and Amber R. Solangi
    Journal: Arabian Journal of Chemistry
    Year: 2024

“Exploring the structural stability of 1T-PdO2 and the Interface Properties of 1T-PdO2/Graphene Heterojunction”

  • Authors: Muhammad Yar Khan, Arzoo Hassan, Xiao-Qing Kelvin Tian, Abdus Samad
    Journal: ACS OMEGA
    Year: 2024

“Experimental Investigation of the Structural, Electrical, and Magnetic Properties of AgNbO3 Silver Nanobytes”

  • Authors: Junaid Khan, Shah Khalid, Pagunda3, Farhan Ahmad, Abdul Jabbar5, Rabah Khenata, Muhammad Yar Khan, and Heba G. Mohamed
    Journal: Journal of Materials Science

“Fabrication of nanofiltration membrane with enhanced water permeability and dyes removal efficiency using tetramethyl thiourea-doped reduced graphene oxide”

  • Authors: Sehrish Qazi, Huma Shaikh, Amber R. Solangi, Madeeha Batool, Muhammad Yar Khan, Nawal D. Alqarni, Sarah Alharthi, and Nora Hamad Al-Shaalan
    Journal: Journal of Materials Science