Chengyan Liu | Advanced Computing | Best Researcher Award

Prof. Chengyan Liu | Advanced Computing | Best Researcher Award

Henan University | China

Professor Chengyan Liu is a distinguished scholar in Condensed Matter Physics and Computational Physics, currently serving as a Full Research Professor at the Institute of Future Technologies, Henan University. He is a Doctoral Supervisor and a recognized Yellow River Scholar. With academic roots from Fudan University and an international postdoctoral stint at UC Irvine, Prof. Liu has become a leading authority on defect physics, semiconductor interfaces, and photoelectronic materials. His prolific output includes over 20 high-impact publications, multiple national research grants, and a reputation for pushing the boundaries of theoretical materials science.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Prof. Liu’s academic journey began with a B.Sc. in Physics from Zhengzhou University in 2011, followed by an M.Sc. in Theoretical Physics at the same institution in 2014. He then pursued a Ph.D. at Fudan University, completing it in 2017 under a rigorous theoretical physics program. During this formative period, he laid a solid foundation in quantum theory, computational modeling, and condensed matter systems, which would become central to his future research. His early interest in semiconductor materials and grain boundary phenomena steered him toward the path of advanced computational materials physics.

🏛️ Professional Endeavors 

After earning his Ph.D., Prof. Liu expanded his expertise as a postdoctoral researcher at the University of California, Irvine, where he worked in the Department of Astrophysics. He returned to China to join Henan University, rapidly progressing from Lecturer (2020) to Distinguished Professor, and most recently, a Fast-Tracked Full Professor (2024) under Henan’s elite talent program. At Henan, he spearheads critical research in the Quantum Materials and Quantum Energy Lab, leads provincial and national-level projects, and serves as a doctoral mentor. His role bridges academic leadership, institutional innovation, and scientific advancement.

🔬 Contributions and Research Focus

Prof. Liu specializes in theoretical studies of defect physics, excited-state dynamics, and optoelectronic behavior in multicomponent semiconductors. His pioneering work on Cu₂ZnSn(SSe)₄ solar cells, defect passivation, and p-type transparent conductors has led to material innovations critical for next-generation solar energy devices. He is known for integrating first-principles calculations, nonadiabatic molecular dynamics, and interface engineering to resolve longstanding efficiency bottlenecks in photovoltaics. His research also touches on phonon imaging, bandgap tuning, and nanostructure thermodynamics, cementing his role as a cross-disciplinary leader in materials computation and energy physics.

🌏 Impact and Influence

Prof. Liu’s research has significantly impacted the fields of photovoltaics, defect engineering, and quantum materials. His work in kesterite solar cells has advanced understanding of Voc-deficits and interface stability, directly influencing experimental design across China and abroad. He has published in Nature, Advanced Energy Materials, and npj Computational Materials, garnering citations and collaborations globally. As a corresponding or first author on most of his publications, he shapes scholarly discourse and sets research directions. His mentorship and visibility in national projects further amplify his influence on China’s renewable energy research landscape.

📚 Academic Citations

Prof. Liu has authored or co-authored over 20 peer-reviewed publications in journals with impact factors exceeding 50 (Nature, AFM, Nano Letters, etc.). His works are widely cited in the fields of materials chemistry, physics, and energy science. His contributions to defect theory, interface passivation, and electronic structure analysis are frequently referenced by experimentalists and theorists alike. Notably, his 2021 Nature paper on single-defect phonons and his 2017 work in Advanced Energy Materials are seminal in their respective domains. His consistent authorship and citation metrics mark him as a globally recognized scholar in computational materials science.

🧠 Research Skills

Prof. Liu possesses deep expertise in first-principles modeling, density functional theory (DFT), nonadiabatic dynamics, and defect analysis. His ability to combine quantum simulations with applied material design allows him to bridge theory and experiment. He has demonstrated prowess in bandgap engineering, passivation chemistry, and interface defect control. His skillset includes advanced tools like VASP, Quantum ESPRESSO, and phonon analysis frameworks. He leads multi-disciplinary teams, mentors graduate researchers, and designs custom simulation frameworks to address complex materials problems placing him at the frontier of computational materials innovation.

🎓 Teaching Experience

Since 2020, Prof. Liu has taught Advanced Quantum Mechanics for graduate students, delivering 54 hours annually. He is renowned for blending rigorous theoretical depth with computational applications, making abstract quantum concepts tangible. His textbook contribution, Study Guide to Griffiths’ Quantum Mechanics, demonstrates his pedagogical commitment and ability to clarify complex physics. Students under his mentorship have contributed to publications, signaling his effectiveness in academic training and talent development. Prof. Liu emphasizes problem-solving, analytical thinking, and research integration, providing a strong foundation for emerging physicists and materials scientists under his guidance.

🏆 Awards and Honors

Prof. Liu was awarded the prestigious Yellow River Scholar title a top provincial honor recognizing distinguished academic performance. His selection as a Fast-Tracked Full Professor under Henan’s High-Level and Urgently Needed Talent Program attests to his scientific merit and leadership potential. He has received multiple NSFC research grants and is the recipient of the Henan Excellent Young Scientists Fund. His inclusion on the Board of the Henan Physical Society further highlights his stature in the academic community. These honors reflect not only his past accomplishments but also his promise for future breakthroughs.

🚀 Legacy and Future Contributions

Prof. Liu is poised to leave a lasting legacy in quantum materials research and solar energy innovation. His pioneering work on transparent conductors, defect-tolerant semiconductors, and carrier lifetime enhancement will continue to shape the next wave of clean energy technology. As a mentor, author, and national project leader, he is building a robust academic ecosystem in Henan Province and beyond. Looking ahead, he aims to expand international collaborations, transition more research toward real-world applications, and foster interdisciplinary integration. His legacy will likely include both scientific excellence and the nurturing of future scientific leaders.

Publications Top Notes

  • Title: Defect inducing large spin orbital coupling enhances magnetic recovery dynamics in CrI3 monolayer
    Authors: Yu Zhou, Ke Zhao, Zhenfa Zheng, Huiwen Xiang, Jin Zhao,* Chengyan Liu,*
    Journal: npj Computational Materials
    Year: 2025

  • Title: Interfacial passivation of kesterite solar cells for enhanced carrier lifetime: Ab initio nonadiabatic molecular dynamics study
    Authors: Huiwen Xiang, Zhenfa Zheng, Ke Zhao, Chengyan Liu,* Jin Zhao,*
    Journal: Advanced Functional Materials
    Year: 2024

  • Title: Synergistic densification in hybrid organic-inorganic MXenes for optimized photothermal conversion
    Authors: Tong Xu, Shujuan Tan,* Shaoxiong Li, Tianyu Chen, Yue Wu, Yilin Hao, Chengyan Liu,* Guangbin Ji,*
    Journal: Advanced Functional Materials
    Year: 2024

  • Title: Defect-complex engineering to improve the optoelectronic properties of CuInS2 by phosphorus incorporation
    Authors: Huiwen Xiang, Jinping Zhang, Feifei Ren, Rui Zhu, Yu Jia, Chengyan Liu,*
    Journal: Physical Review Applied
    Year: 2023

  • Title: Analytical energy formalism and kinetic effects of grain boundaries: A case study of graphene
    Authors: Chengyan Liu, Zhiming Li, Xingao Gong,*
    Journal: Applied Physics Letters
    Year: 2024

 

Sathish Panneer Selvam | Theoretical Advances | Best Scholar Award

Dr. Sathish Panneer Selvam | Theoretical Advances | Best Scholar Award

Assistant Professor at Gachon university | South Korea

Dr. Sathish Panneer Selvam is a dynamic Assistant Professor at Gachon University, South Korea, specializing in electrochemical biosensors, nanomaterials, and density functional theory (DFT). With a strong foundation in experimental chemistry and computational modeling, Dr. Selvam’s interdisciplinary research bridges the gap between biomedical diagnostics and renewable energy catalysis, contributing significantly to next-generation sensor technologies.

👨‍🎓Profile

Google scholar 

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Selvam began his academic journey with a Master’s degree in Electrochemical Sensing and Water Splitting under Prof. Kyusik Yun, where he focused on DNA-based nanomaterials and self-assembled sensors. He pursued his PhD (2020–2024) under Prof. Sungbo Cho, contributing to sensor development for disease diagnostics and reaction mechanism analysis via DFT. This formative period laid the groundwork for his future breakthroughs in smart diagnostics.

💼 Professional Endeavors

Starting as a Quality Control Executive at Biocon Biopharmaceutical Ltd., Dr. Selvam transitioned seamlessly into academia. His current role as an Assistant Professor (2024–2025) at Gachon University involves leading advanced biosensing projects, such as cancer diagnostics, enzyme activity detection, and nanocomposite development. His hands-on expertise spans fabrication, characterization, and computational modeling.

🔬 Contributions and Research Focus

Dr. Selvam’s research is distinguished by its interdisciplinary depth and real-world relevance. He has designed single-atom catalyst biosensors for detecting pancreatic and breast cancer. Additionally, he has explored molecularly imprinted polymers for biomarker detection and utilized DFT and molecular dynamics to simulate reaction pathways. His development of triboelectric nanogenerators for self-powered bacterial detection reflects his ability to address critical challenges in medical diagnostics, environmental monitoring, and energy applications.

🌍 Impact and Influence

Dr. Selvam has authored 16+ peer-reviewed publications, many in high-impact journals such as Chemical Engineering Journal, Small Methods, and Biosensors and Bioelectronics, with impact factors ranging from 8 to 23. His contributions to cancer biosensing, H2 evolution, and COVID-19 detection have attracted international collaborations with researchers from UK, France, and India, solidifying his global influence.

📊 Academic Cites & Recognition

Dr. Selvam’s work is increasingly cited by peers in the fields of biosensors, nanotechnology, and theoretical chemistry. With several publications already gaining traction in the academic community, he is on track for significant citation growth and thought leadership in applied quantum chemistry and nanomedicine.

🧪 Research Skills

Dr. Selvam demonstrates a robust technical skill set that seamlessly bridges experimental techniques with computational modeling. He excels in electrochemical characterization using systems like Iviumstat, Biologics, and PARSTAT. His expertise in structural analysis includes SEM, TEM, XRD, EXAFS, and Raman spectroscopy. Additionally, he is proficient in High-Performance Liquid Chromatography (HPLC) and a variety of spectroscopic tools. On the theoretical side, he utilizes DFT simulations, molecular docking, and molecular dynamics, allowing for deep insights into complex reaction mechanisms.

🎓 Teaching Experience

As an Assistant Professor, Dr. Selvam is engaged in mentoring undergraduate and graduate students. He fosters a research-driven learning environment that encourages critical thinking, scientific writing, and interdisciplinary collaboration, essential for shaping future scientists.

🌟Patents

Dr. Selvam holds several patents, including the Chalcogenide Loaded Cobalt MOF for Patulin Mycotoxin Detection (KR Patent 10-2437215), an Electrochemical Biosensing Platform for Rheumatoid Arthritis Biomarker detection (KR Patent 10-2381031), and a Nanocomposite modified electrode for Etidronic acid detection (KR Patent 10-2475238), co-authored with Sungbo Cho and Kyusik Yun. These innovations demonstrate his expertise in biosensing, electrochemical platforms, and biomarker detection.

📘 Legacy and Future Contributions

Dr. Selvam has a strong portfolio of patents, a growing reputation in academic publishing, and a unique ability to synthesize experimental and computational insights. As a thought leader in smart biosensing and energy catalysis, his future contributions are expected to include the development of scalable diagnostic tools for global health, AI-integrated sensor platforms, and further exploration of quantum chemistry for bio-interfaces. His work promises significant advances in both healthcare and energy solutions.

Publications Top Notes

EXAFS and spectroscopic insights into Mn, Tc, and Re-doped phthalocyanines: A multifaceted DFT study of electronic and optical properties

  • Authors: Sathish Panneer Selvam, Zeeshan, Sungbo Cho
    Journal: Surfaces and Interfaces
    Year: 2025

Cerium single atom anchored silver selenide: A high-performance catalyst for hydrogen evolution reaction with ultra-low activation energy and enhanced stability

  • Authors: Sathish Panneer Selvam, Sungbo Cho
    Journal: Surfaces and Interfaces
    Year: 2024

Experimental insights and DFT analysis of metal-free DNA nanocatalyst with enhanced hydrogen evolution via phosphate-mediated proton acceptance

  • Authors: Sathish Panneer Selvam, Shanmugasundaram Kamalakannan, K. Rudharachari Maiyelvaganan, Muthuramalingam Prakash, Sivalingam Gopi, Hansa Mahajan, Kyusik Yun, Sungbo Cho
    Journal: International Journal of Hydrogen Energy
    Year: 2024

Highly Synergistic Co3+ and Pyridinic‐N‐Rich Bifunctional Electrocatalyst for Ultra‐Low Energy-Driven Effective Hydrogen Production and Urea Oxidation

  • Authors: Sathish Panneer Selvam, Sungbo Cho
    Journal: Advanced Sustainable Systems
    Year: 2022

Novel SeS2-loaded Co MOF with Au@PANI comprised electroanalytical molecularly imprinted polymer-based disposable sensor for patulin mycotoxin

  • Authors: Sathish Panneer Selvam
    Journal: Biosensors and Bioelectronics
    Year: 2021

 

Hoc Nguyen | Computational Methods | Best Researcher Award

Assoc. Prof. Dr. Hoc Nguyen | Computational Methods | Best Researcher Award

Senior Lecturer at Hanoi National University of Education | Vietnam

Nguyen Quang Hoc D, Assoc. Prof. PhD, is a distinguished academic and researcher in the field of Theoretical Physics. He currently holds the position of High-ranking Lecturer at the Department of Theoretical Physics, Faculty of Physics, at the Hanoi National University of Education, where he has contributed extensively to both teaching and research since 2009. His academic journey reflects a deep commitment to physics, spanning over decades of study and experience in solid-state physics, theoretical physics, and mechanical properties of materials.

👨‍🎓Profile

ORCID

Early Academic Pursuits 🎓

Nguyen Quang Hoc D embarked on his academic career with a solid foundation in solid-state physics, earning his Engineer degree from Hanoi University of Technology in 1982. His deep interest in theoretical physics led him to pursue advanced studies at the Hanoi National University of Education, where he completed his Master’s degree in Theoretical Physics in 1989 and later achieved his PhD in 1994, further honing his expertise in the field.

Professional Endeavors 💼

His professional career began in 1983 at the College of Teacher Training (now Haiphong University), where he served as a Lecturer and Head of the Physical Laboratory until 1994. Later, he joined the Institute of Nuclear Science and Technique, VINATOM in 1994, contributing as a Researcher. In 1997, he transitioned to the Department of Scientific Management, Faculty of Physics at Hanoi National University of Education, where he took on roles as an Expert and Principal Lecturer until he became an Associate Professor in 2009. Since 2016, he has remained in his current capacity as a High-ranking Lecturer at the university.

Contributions and Research Focus 🔬

Prof. Nguyen Quang Hoc D has focused much of his research on mechanical and thermodynamic properties of metals and interstitial alloys, particularly through the statistical moment method. His work has provided valuable insights into the transport properties of superconductors and how artificial nanostructures can influence these properties. His research has significant implications in materials science, particularly in understanding how nanostructures can improve the performance of superconductors in real-world applications.

Impact and Influence 🌍

With a career spanning more than three decades, Assoc. Prof. Nguyen Quang Hoc D has made lasting contributions to both academic research and teaching. His work on superconductors and nanostructure materials has advanced our understanding of the mechanical and thermodynamic properties of advanced materials. His findings have opened the door for further studies in nanotechnology and material science, positioning him as a leading figure in the development of advanced materials in the Vietnamese academic community.

Academic Citations 📚

Prof. Nguyen Quang Hoc D has earned recognition for his work, resulting in numerous academic citations and publications in international journals related to materials physics. His contributions to the field of theoretical physics have significantly impacted the understanding of interstitial alloys, superconductivity, and the behavior of metals under extreme conditions, making him a respected authority in his field.

Research Skills 🧠

Assoc. Prof. Nguyen Quang Hoc D possesses advanced research skills in statistical methods, materials characterization, and nanotechnology. His expertise includes the application of the statistical moment method to study the thermodynamic behavior of materials, allowing him to analyze and predict the mechanical properties of metals and alloys under various conditions. He has also worked on superconductivity, making contributions to transport properties and the influence of nanostructure pinning on type-II superconductors.

Teaching Experience 👨‍🏫

Assoc. Prof. Nguyen Quang Hoc D has a wealth of teaching experience, spanning over two decades at the Hanoi National University of Education. He has taught a range of undergraduate and graduate courses in theoretical physics and solid-state physics, providing students with foundational knowledge while also challenging them with cutting-edge concepts in the field. His role as a mentor and principal lecturer has helped shape the next generation of physicists and scientists in Vietnam.

Awards and Honors 🏅

Throughout his career, Assoc. Prof. Nguyen Quang Hoc D has been the recipient of various awards and honors in recognition of his contributions to the field of physics. His dedication to both research and teaching has earned him respect within the academic community, and he continues to inspire those around him with his innovative research and commitment to excellence.

Legacy and Future Contributions 🌱

As Assoc. Prof. Nguyen Quang Hoc D continues his work at Hanoi National University of Education, his legacy remains rooted in his innovative research, teaching dedication, and academic leadership. Moving forward, he is expected to continue influencing the field of material science, particularly in the realms of superconductivity and nanotechnology. His future contributions will undoubtedly lead to advancements in the understanding of metals, alloys, and superconductive materials, strengthening the scientific community in Vietnam and beyond.

Publications Top Notes

On the Melting of Crystal Under Compression: SMM Fundamental Theory and its Application to Laser Materials Processing

  • Authors: Nguyen Quang Hoc, Le Hong Viet
    Journal: Transactions of the Indian Institute of Metals
    Year: 2025

Theoretical predictions of thermodynamic properties, elastic deformation, HCP-FCC structural phase transition and melting of iron at high temperatures up to 18000 K and high pressures up to 4000 GPa

  • Authors: Nguyen Quang Hoc, Nguyen Duc Trung, Hua Xuan Dat, Le Thu Lam
    Journal: Physics Letters A
    Year: 2025

Correction: Thermodynamic properties of perovskite MgSiO3 with cubic structure under extreme conditions

  • Authors: Quang Hoc Nguyen, Nhi Quynh Ngo, Thi Mai Dao, Cong Vien Tran, Thi Thu Tra Lai, Thi Van Anh Le, Thi Thuy An Nguyen
    Journal: The European Physical Journal B
    Year: 2024

Thermodynamic properties of perovskite MgSiO3 with cubic structure under extreme conditions

  • Authors: Hoc Quang Nguyen, Nhi Quynh Ngo, Mai Thi Dao, Vien Cong Tran, Tra Thi Thu Lai, Anh Thi Van Le, An Thi Thuy Nguyen
    Journal: The European Physical Journal B
    Year: 2024

Study on Remelting of Crystal Under Extreme Conditions

  • Authors: Hoc Quang Nguyen, Huyen Thanh Thi Tran, Nhi Quynh Ngo, Mai Thi Dao, Phong Khac Nguyen
    Journal: Transactions of the Indian Institute of Metals
    Year: 2024

 

 

Ali Zaoui | Computational Methods | Computational Science Excellence Award

Prof. Ali Zaoui | Computational Methods | Computational Science Excellence Award

Djillali Liabes University of SIDI BELI ABBES | Algeria

Ali Zaoui is a Professor and Team Leader at the Physics Computational Materials Laboratory at the University of Sidi Bel Abbes, Algeria. With a distinguished career spanning several decades, he has made significant contributions to the field of computational materials science. Zaoui holds a PhD in Material Sciences and has taught in various capacities, progressing from General Physics to Nanotechnology at the University of Sidi Bel Abbes.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 🎓

Zaoui’s academic journey began with a B.Sc. in Physics from the University of Sidi Bel Abbes (1991-1996). He then pursued a M.Sc. in Solid State Physics (1998-2000), focusing on the electronic structure of BSb compounds using the FP-LAPW method. Zaoui continued his academic pursuit with a Ph.D. in Material Sciences (2000-2005), conducting groundbreaking research on TiCxN1−x, ZrxNb1−xC, and HfCxN1−x alloys through first-principles calculations. His early work established a foundation in ab-initio methods for studying the electronic structures of complex materials.

Professional Endeavors 🧑‍💼

Zaoui’s professional career includes roles as a Professor at the University of Sidi Bel Abbes, where he has been an influential faculty member since 2005. Additionally, he has held leadership roles, such as Team Leader and Director of various computational material science laboratories. His contributions extend beyond teaching, as he has also served in prominent positions such as Dean of the Faculty of Exact Sciences at the Djillali Liabes University and President of the Doctoral Formation Committee.

Contributions and Research Focus 🔬

Zaoui’s research focus spans a range of topics, with particular emphasis on computational physics, material science modeling, and condensed matter physics. His expertise lies in studying strongly correlated systems, magnetism, and superconductivity in atomic and condensed matter physics. His contributions in first-principles calculations have advanced the understanding of alloy properties, nanostructures, and electronic behaviors of various materials. Notable works include research on Hf3N4 and Zr3N4 compounds, as well as RE2Ni2Pb (R=Er, Ho), contributing to the advancement of material science through simulation and modeling techniques.

Impact and Influence 🌐

Zaoui’s impact in the field of computational material science is substantial, with significant influence in educating future generations of physicists. As a team leader, he has guided a range of research projects that continue to shape the field. His involvement in summer schools, conferences, and workshops on DFT, simulation methods, and materials modeling has contributed to international collaborations and the sharing of knowledge on an international scale. His research has shaped the academic landscape of materials science, particularly in Algeria and North Africa.

Academic Cites 📚

Zaoui’s academic works have gained significant recognition and have been cited in a wide array of material science journals. His research on Hf3N4 and Zr3N4 compounds, along with his contributions to optical properties of semiconductors and first-principles simulations, has been referenced widely in the scientific community. His work is highly regarded for its accuracy, innovation, and practical application in understanding the electronic structures of materials.

Research Skills 🧑‍🔬

Zaoui’s research is known for the depth of computational analysis and precision in applying first-principles calculations. He is highly skilled in using DFT, LDA+U methods, and ab-initio techniques to model complex material properties, from magnetism to superconductivity. His computational techniques allow for predictive modeling of material behaviors, an essential aspect in the development of new materials for various applications. Zaoui’s research is marked by his ability to bridge theory with practical outcomes, bringing computational insights into real-world scenarios.

Teaching Experience 📖

Zaoui has a rich and diverse teaching experience, spanning from general physics to specialized subjects like magnetism, thermodynamics, and nanotechnology. He has taught at both undergraduate and graduate levels, including at institutions like the Higher School of Computer Science of Sidi Bel Abbes. His teaching extends beyond the classroom, having led seminars, summer schools, and research conferences. His commitment to educating the next generation of physicists has made a lasting impact on the scientific community in Algeria.

Awards and Honors 🏆

While detailed awards are not listed in the provided information, Zaoui’s significant contributions to computational material science, his leadership in education, and his influential research undoubtedly position him for recognition in various academic circles. His leadership role in organizing scientific committees and overseeing doctoral training programs reflects his contribution to the academic excellence in material science.

Legacy and Future Contributions 🌱

Zaoui’s legacy is deeply rooted in his research, teaching, and leadership in computational materials science. His future contributions are expected to continue influencing the advancement of computational tools and material science innovations. With his focus on nanotechnology, superconductivity, and magnetism, Zaoui is well-positioned to make future breakthroughs in the understanding of next-generation materials. As his work continues to inspire the global research community, Zaoui’s legacy will likely shape the future of computational materials science and nanotechnology for many years to come.

Publications Top Notes

Impact of polymer binders on the aggregation modes of two-pieces CSH composites

  • Authors: J., Jia, Jiwei; A., Zaoui, Ali; W., Sekkal, Wassila
    Journal: Cement and Concrete Research, Year: 2025

Molecular modeling of clay minerals: A thirty-year journey and future perspectives

  • Authors: A., Zhou, Annan; J., Du, Jiapei; A., Zaoui, Ali; W., Sekkal, Wassila; M.S., Sahimi, Muhammad Syamim
    Journal: Coordination Chemistry Reviews, Year: 2025

Crystal structure and magnetic properties of lithium nitridoferrate: Density functional theory calculations

  • Authors: M.R., Aced, Mohammed Reda; N., Benayad, Nawel; F., Drief, F.; S., Kacimi, Salima; M., Djermouni, Mostefa
    Journal: Journal of Magnetism and Magnetic Materials, Year: 2025

Exploring superconducting signatures in high-pressure hydride compounds: An electronic-structure analysis

  • Authors: C., Mohammed Krarroubi; N., Benayad, Nawel; F., Benosman, Fayssal; S., Kacimi, Salima; A., Zaoui, Ali
    Journal: Physica C: Superconductivity and its Applications, Year: 2025

Influence of particle size distribution and normal pressure on railway ballast: A DEM approach

  • Authors: Z., Yan, Zhu; A., Zaoui, Ali; W., Sekkal, Wassila
    Journal: High-speed Railway, Year: 2025

Discrete-Element Method Study of the Effect of Ballast Layer Depth on the Performance of Railway Ballast Bed

  • Authors: Z., Yan, Zhu; A., Zaoui, Ali; W., Sekkal, Wassila
    Journal: International Journal of Geomechanics, Year: 2025

 

 

 

Quynh Anh Thi Nguyen | Computational Methods | Best Researcher Award

Dr. Quynh Anh Thi Nguyen | Computational Methods | Best Researcher Award

Researcher at University of Ulsan | South Korea

Quynh Anh Thi Nguyen is a doctoral researcher at the University of Ulsan (UOU), South Korea, where she is pursuing a Ph.D. in physics under the supervision of Prof. Sung Hyon “Sonny” Rhim. Her research primarily focuses on spintronics and first-principles calculations in tungsten (W) alloys. With a strong academic background, she has excelled in her field, maintaining a GPA of 4.17/4.5 during her doctoral studies and a similar academic achievement in her undergraduate studies.

👨‍🎓Profile

Google scholar

Scopus

🎓 Early Academic Pursuits

Nguyen’s academic journey began at Hanoi National University of Education (HNUE), Vietnam, where she completed her Bachelor’s degree in Physics with a thesis on the melting behavior of substitution alloys under pressure. During her undergraduate years (2013-2017), she was consistently ranked as an excellent student and earned recognition in scientific conferences. Her academic foundation set the stage for her future exploration in computational physics and materials science.

💼 Professional Endeavors

Since 2017, Nguyen has been pursuing her Doctoral degree at the University of Ulsan (UOU), South Korea. Under the mentorship of Prof. Sung Hyon Rhim, her research is centered on the study of spintronics in W alloys and the magnetic properties of Heusler compounds. She has delved into critical aspects of spin Hall conductivity, orbital Hall conductivity, and magnetism, contributing to the understanding of materials used in next-generation electronic devices like spintronic sensors and memory devices.

Contributions and Research Focus 🔬

Quynh Anh’s research mainly explores the Spin Hall conductivity and orbital Hall effects in various materials, including transition metals, Heusler compounds, and tetragonal alloys. Her work on spintronics—specifically related to the spin-orbit torque efficiency of materials like β-W heterojunctions—has led to several high-impact publications. One of her major contributions is the study of the spin Hall conductivity in W-Si alloys, which has significant implications for spintronic devices and energy-efficient electronics.

Her current research includes W-N alloys, and the impact of Ti substitution on β-W, both of which are preparing for publication.

Impact and Influence 🌍

Quynh Anh’s work is making a significant impact on the field of spintronics and material physics, especially with her first-principles calculations on the properties of W alloys. By exploring magnetism and conductivity in alloys, she is contributing to the development of advanced materials with better performance in electronics and magnetic devices. Her research aids in the creation of energy-efficient technologies and high-performance electronic components, positioning her as a leading researcher in her field.

Research Skills 💻

Quynh Anh possesses a strong set of technical skills that aid her research, including expertise in software such as Photoshop, Origin, Matlab, Python, and advanced tools like VASP, Wannier90, and OpenMx for computational physics. These skills have enabled her to conduct first-principles calculations and detailed simulations, giving her a deep understanding of material properties and quantum phenomena.

Awards and Honors 🏆

Quynh Anh’s work has been widely recognized:

  • Best Poster Award at the International Conference on Magnetic and Superconducting Materials (2018) in Seoul, Korea.
  • Multiple Excellent Student awards during her undergraduate years.
  • Third Prize at the Student Conference Science Research (2017).

These honors underscore her exceptional academic performance and research contributions.

Legacy and Future Contributions 🌟

With her expertise in spintronics and material physics, Quynh Anh is set to continue making groundbreaking contributions to the field of advanced materials. Her research on spin Hall conductivity, orbital Hall effects, and magnetism will likely pave the way for future innovations in energy-efficient electronics and next-generation magnetic devices. Quynh Anh’s legacy will undoubtedly inspire future scientists to explore the untapped potentials of transition metal alloys and spintronic materials, ensuring her lasting impact in the world of physics and material science.

Publications Top Notes

Ti-alloyed β-W heterojunctions exhibiting spin-orbit torque switching at a wide operating temperature range

  • Authors: J. Lee, Q. A. T. Nguyen, D. Kim, S. H. Rhim, Y. K. Kim
    Journal: Applied Surface Science
    Year: 2025

Synergetic Modulation of Electronic Properties of Cobalt Oxide via “Tb” Single Atom for Uphill Urea and Water Electrolysis

  • Authors: S. Ajmal, A. Rasheed, W. Sheng, G. Dastgeer, Q. A. T. Nguyen, P. Wang, …
    Journal: Advanced Materials
    Year: 2025

Unlocking electrocatalytic dynamics with anti-MXene borides monolayers for nitrate reduction

  • Authors: T. H. Ho, Q. A. T. Nguyen, B. T. T. Le, S. G. Kim, W. Q. Bui
    Journal: Applied Surface Science
    Year: 2024

Spin Hall Conductivity of W100-xSix Alloys in A15 Structure: A Comprehensive Study

  • Authors: Q. A. T. Nguyen, S. H. Rhim
    Journal: Journal of Magnetics
    Year: 2024

Orbital-engineered anomalous Hall conductivity in stable full Heusler compounds: a pathway to optimized spintronics

  • Authors: Q. A. T. Nguyen, T. H. Ho, S. G. Kim, A. Kumar, V. Q. Bui
    Journal: Journal of Materials Chemistry C
    Year: 2024

 

 

 

Radomira Lozeva | Computational Methods | Best Researcher Award-3369

Dr.Radomira Lozeva| Computational Methods | Best Researcher Award

Dr Radomira Lozeva CNRS

Professional Profiles

Publications

Conclusion

Given her extensive research experience, significant contributions to nuclear physics, leadership in experiments, successful mentorship, and active engagement in the scientific community, Radomira Lozeva is highly suitable for both the Research for Community Impact Award and the Best Research Award. Her innovative work and dedication to advancing the field make her a strong contender for these prestigious recognitions.