Hayriye SUNDU | High energy physics | Best Researcher Award

Prof. Hayriye SUNDU | High energy physics | Best Researcher Award

Professor at ISTANBUL MEDENIYET UNIVERSITY | Turkey

Assoc. Prof. Dr. Hayriye Sundu Pamuk is a seasoned theoretical physicist specializing in high energy physics and QCD sum rules, currently serving at Istanbul Medeniyet University. With over two decades of academic experience, she has made impactful contributions to the field of exotic hadrons, publishing extensively in high-impact journals. Her work spans theoretical predictions of heavy tetraquark states, hybrid mesons, and thermal properties of hadronic matter. She is recognized for her rigorous research, effective mentorship, and leadership roles in academia.

👨‍🎓Profile

Google scholar

Scopus

📘 Early Academic Pursuits

Dr. Hayriye Sundu Pamuk began her academic journey with a B.Sc. in Physics Education from Balıkesir University in 1998. Her passion for particle physics led her to Middle East Technical University (METU), where she completed both her M.Sc. and Ph.D. in High Energy Physics under the supervision of Prof. Dr. Erhan Onur İltan. Her graduate research focused on the Two Higgs Doublet Model (2HDM), addressing phenomena such as lepton flavor violation and the muon anomalous magnetic moment. These early explorations laid the theoretical groundwork for her future contributions in particle phenomenology and quantum field theory.

🧑‍🔬 Professional Endeavors

Her professional academic path includes notable roles at top institutions. From 2000 to 2007, she served as a research and teaching assistant at METU. In 2007, she joined Kocaeli University as a faculty member, advancing from Dr. Assistant to Associate Professor. Her tenure there spanned 16 years, enriched by administrative leadership and mentorship of graduate theses. In 2023, she transitioned to the Faculty of Engineering and Natural Sciences at Istanbul Medeniyet University, where she continues to lead innovative research and graduate instruction in advanced theoretical physics topics.

🔬 Contributions and Research Focus 

Dr. Sundu Pamuk’s primary research lies in the phenomenology of exotic hadrons, particularly tetraquarks and hybrid mesons, explored through QCD sum rules and thermal field theory. Her studies contribute to understanding the non-perturbative aspects of QCD, and she is often cited for theoretical analyses of fully-heavy quark systems such as bbcc and bcbc states. Her recent works  appearing in journals like Phys. Rev. D, Eur. Phys. J. C, and Phys. Lett. B are instrumental in predicting the mass spectra, decay constants, and thermal behaviors of these particles, bridging theory with potential experimental discovery.

🌍 Impact and Influence

Dr. Sundu Pamuk’s influence in high-energy physics is reflected in her collaborations across multiple institutions and countries, especially with leading researchers like K. Azizi and S.S. Agaev. Her papers are widely downloaded, cited, and reviewed within the theoretical particle physics community. As a graduate mentor, she has produced scholars contributing to academia and research. Her investigations are especially relevant in the era of LHC upgrades and heavy ion collisions, where her predictions guide experimental searches. Her administrative roles demonstrate her strategic vision for academic excellence and her commitment to building research capacity.

📈 Academic Citations

With more than 20 SCI-indexed publications in a short period (2023–2025), Dr. Sundu Pamuk has maintained a high publication density. Her articles in reputable journals such as Phys. Rev. D and Eur. Phys. J. C have garnered significant citations, particularly in areas involving exotic quark configurations. Her collaborative works on thermal properties of tetraquarks and decay mechanisms of hybrid mesons are frequently referenced by fellow theorists and computational physicists. Her academic footprint is steadily growing, with Google Scholar and ResearchGate profiles that reflect her influence, consistency, and scientific originality.

🛠️ Research Skills 

Dr. Sundu Pamuk demonstrates proficiency in computational techniques, particularly QCD sum rules, operator product expansion, and thermal field theory. She is adept at performing analytical derivations and numerical modeling, frequently applying them to predict hadron spectra, leptonic decay constants, and transition amplitudes. Her ability to bridge theoretical frameworks with real-world particle behavior makes her a sought-after collaborator. She also employs tools such as Mathematica, Maple, and other symbolic computation platforms. Her focus on rigor, reproducibility, and mathematical consistency has earned her strong credibility in quantum field theory and particle phenomenology.

👩‍🏫 Teaching Experience

An accomplished educator, Dr. Sundu Pamuk has taught a wide range of graduate and undergraduate courses, including Advanced Quantum Physics, Statistical Physics, Thermodynamics, and Electromagnetic Theory. She is noted for her clarity of explanation, student mentorship, and the ability to simplify complex physical concepts. At both Kocaeli University and Istanbul Medeniyet University, she has introduced innovative approaches in courses such as Numerical Methods in High Energy Physics. Her consistent engagement with students beyond lectures through thesis advising, research projects, and workshops reflects her commitment to fostering scientific curiosity and critical thinking.

🏆 Awards and Honors

Dr. Sundu Pamuk’s academic excellence has been formally recognized with multiple Scientific Achievement Prizes from Kocaeli University (2011, 2012, 2016, 2017, 2019, 2021). She also received the Honour Students Prize during her doctoral studies at METU in 2004, highlighting early promise. Her repeated honors reflect sustained research output, dedication to teaching, and service to the academic community. These accolades serve as evidence of institutional and peer recognition, affirming her status as a leading scholar in particle physics and a role model for younger scientists in Turkey and beyond.

🌟 Legacy and Future Contributions

As a leading figure in exotic hadron physics, Dr. Sundu Pamuk is poised to make lasting contributions to quantum chromodynamics and beyond-standard-model physics. Her future work is expected to delve into multi-quark dynamics at extreme conditions, relevant for astrophysical phenomena and collider experiments. Her legacy will also include her influence on physics education, as her former students continue to shape research in Turkey and globally. With a strong foundation and growing international collaborations, she is well-positioned to lead interdisciplinary initiatives, contribute to policy in science education, and inspire the next generation of physicists.

Top Noted Publications

Fully heavy asymmetric scalar tetraquarks

  • Authors: S.S. Agaev, K. Azizi, H. Sundu
    Journal: European Physical Journal A
    Year: 2025

Scalar fully-charm and bottom tetraquarks under extreme temperatures

  • Authors: A. Aydın, H. Sundu, J.Y. Süngü, E. Veli Veliev
    Journal: European Physical Journal C
    Year: 2025

Hidden charm-bottom structures bcb̄c̄: Axial-vector case

  • Authors: S.S. Agaev, K. Azizi, H. Sundu
    Journal: Physics Letters B
    Year: 2025

Properties of the tensor state bc b̄ c̄

  • Authors: S.S. Agaev, K. Azizi, H. Sundu
    Journal: Physical Review D
    Year: 2025

Decays of the light hybrid meson 1⁻⁺

  • Authors: G.D. Esmer, K. Azizi, H. Sundu, S. Türkmen
    Journal: Physical Review D
    Year: 2025

 

Ravishankar Ambi | High energy physics | Best Researcher Award

Assist. Prof. Dr. Ravishankar Ambi | High energy physics | Best Researcher Award

Assistant Professor at Jaysingpur College, Jaysingpur | India

Dr. Ravishankar Ramesh Ambi is a dedicated physicist specializing in material science and thin film gas sensor technology. Awarded a Ph.D. in Physics from Shivaji University, Kolhapur in July 2024, he has established himself as an emerging researcher focusing on advanced nanomaterials for energy conversion and storage devices. His academic journey reflects a consistent pursuit of knowledge, culminating in innovative research outputs and contributions to both science and education.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Dr. Ambi’s educational foundation is rooted in physics, starting with a Bachelor of Science (B.Sc.) from Jaysingpur College, followed by a Master of Science (M.Sc.) from Shivaji University, where he secured First Class with a percentage of 55.21%. His academic diligence from the early stages set the stage for his advanced research, culminating in a Ph.D. thesis on “Studies on Metal Oxide NiO coated ZnO thin films for gas sensing application,” showcasing his growing expertise in nanomaterial sciences.

💼 Professional Endeavors

Since July 2024, Dr. Ambi has been contributing as a faculty member in the Department of Physics at Jaysingpur College, engaging in both teaching and research. Alongside his academic duties, he has taken on roles such as Theory Exam Junior Supervisor and Practical Lab Expert, reflecting his commitment to academic integrity and student development. His participation in workshops and seminars further demonstrates his proactive engagement with the evolving educational landscape.

🔬 Contributions and Research Focus

Dr. Ambi’s primary research areas include material science, thin film gas sensors, and energy conversion and storage devices. His significant research work has led to the publication of several papers in reputable international journals, including those with high impact factors (up to 4.1). He holds a patent for vertically aligned ZnO nanorod films aimed at highly sensitive and selective NO2 gas detection, highlighting his contribution to applied science and sensor technology innovation.

🌟 Impact and Influence

Through his research on metal oxide coated ZnO thin films and gas sensors, Dr. Ambi addresses critical challenges in environmental monitoring and energy technologies. His work on NiO nanosheets and hierarchical heterostructures has enhanced the sensitivity and selectivity of gas sensors, contributing to improved air quality detection methods. His active participation in international conferences and national workshops amplifies his influence in the scientific community.

📚 Academic Cites and Publications

Dr. Ambi has published at least five significant research papers, including contributions in Applied Physics A, Materials Science & Engineering B, and Sensors and Actuators A: Physical, journals recognized for their academic rigor and impact. His papers focus on novel nanostructures for gas sensing, reflecting both theoretical insight and practical applications. These publications contribute to his growing academic reputation and serve as references for ongoing research in the field.

🧰 Research Skills

Dr. Ambi exhibits strong competencies in thin film deposition techniques, chemical synthesis of nanomaterials, and characterization methods such as spectroscopy and microscopy. His expertise extends to fabricating nanostructured sensors with enhanced performance, and he has experience managing funded research projects, including a notable project with IIT Bombay’s Centre of Excellence in Nano-electronics. These skills position him as a valuable asset for both academic and applied research.

👨‍🏫 Teaching Experience

Since his appointment in July 2024, Dr. Ambi has actively contributed to the academic growth of physics students at Jaysingpur College. He has taught undergraduate courses aligned with the new NEP-2020 curriculum, participated in curriculum workshops, and overseen laboratory practicals. His role extends beyond teaching, including organizing examinations and serving on committees, showcasing a holistic approach to education.

🏆 Awards and Honors

Dr. Ambi’s notable achievement includes the award of his Ph.D. in 2024 and securing research grants for projects on ZnO thin films. His published patent further emphasizes his innovative capabilities. Though early in his career, his consistent research output and academic contributions position him well for future awards and recognitions.

🌱 Legacy and Future Contributions

With a strong foundation in nanomaterials and sensor technology, Dr. Ambi is poised to make significant contributions to environmental monitoring and sustainable energy solutions. His dedication to research, combined with his active teaching role, suggests a promising future as both a scientist and educator. Continuing to expand his research network and international collaborations will further enhance his impact and legacy in the scientific community.

Top Noted Publications

NiO nanosheet-assembled chemiresistive for NO2 detection

  • Authors: R. R. Ambi, R. A. Mali, A. B. Pawar, M. G. Mulla, R. K. Pittala
    Journal: Applied Physics A (Appl. Phys A)
    Year: 2025

Highly porous hierarchical NiO coated ZnO p-n heterostructure for NO2 detection

  • Authors: R. R. Ambi, A. A. Mane, V. B. Patil, R. D. Mane
    Journal: Materials Science & Engineering B
    Year: 2024

Highly porous NiO microstructure for NO2 detection

  • Authors: R. R. Ambi, A. A. Mane, R. D. Tasgaonkar, R. D. Mane
    Journal: Physica B: Condensed Matter
    Year: 2024

NO2 Sensing properties of chemically deposited vertically aligned flowerlike hexagonal ZnO nanorods

  • Authors: R. R. Ambi, M. G. Mulla, R. J. Pittala
    Journal: Sensors and Actuators A: Physical (Sens. Actuators: A Phys.)
    Year: 2024

Synthesis and Characterization of CdO Thin Films by Spray Pyrolysis Method

  • Authors: R. D. Mane, A. B. Patil, R. R. Ambi, U.E. Mote, R. D. Tasgaonkar
    Journal: Research Journal of Life Science, Bioinformatics, Pharmaceutical and Chemical Science
    Year: 2022

 

Devika Phukan | The matter particles | Women Researcher Award

Dr. Devika Phukan | The matter particles | Women Researcher Award

Associate Professor at The Assam Royal Global University, Guwahati | India

Dr. Devika Phukan is a distinguished physicist and professor with a career spanning over 25 years in the domain of optics, photonics, and laser spectroscopy. Currently serving at Royal Global University, she is widely recognized for her research excellence, teaching dedication, and mentorship of doctoral scholars. Her journey is an inspiring example of a woman researcher who has significantly contributed to scientific advancement in applied physics.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📚 Early Academic Pursuits

Dr. Phukan began her academic journey at HFC Model School, Namrup (now BVFCL), followed by higher secondary education at Namrup Higher Secondary School. Her passion for physics took shape at Gargaon College, where she completed her B.Sc. in Physics, later pursuing M.Sc., M.Phil., and Ph.D. in Physics from Dibrugarh University. This solid academic foundation laid the groundwork for her career in laser physics and spectroscopy.

🧑‍🏫 Professional Endeavors

Dr. Phukan embarked on her professional career at Salt Brook Academy (1999–2001), later holding positions at Sri Revanna Siddheswaraya Institute of Technology and Rajiv Gandhi Institute of Technology, Bangalore. Since 2009, she has been an integral part of Royal Global University, contributing as a senior faculty member and researcher. Her professional trajectory reflects steady growth, leadership, and commitment to academic excellence.

🔬 Contributions and Research Focus

Dr. Phukan’s research interests include laser and nonlinear optics, optical communications, optoelectronics, and photonics, with a particular emphasis on laser spectroscopy and photonic crystal fibers. She has authored 13 peer-reviewed journal articles and several conference papers that address cutting-edge topics like soliton pulse propagation, stimulated Raman scattering, and Brillouin threshold analysis. Her recent work in ultrashort optical pulse transmission in photonic crystal fibers demonstrates her contributions to emerging technologies in fiber optics and communication systems.

🌐 Impact and Influence

Her work is cited in reputed journals such as the Journal of Optics, Pramana – Journal of Physics, and Asian Journal of Physics. Through her mentorship, two Ph.D. scholars have been awarded their degrees, while six more are currently pursuing research under her guidance. This highlights her influence in shaping the next generation of physicists and her ability to create a vibrant research ecosystem.

📈 Academic Citations and Research Skills

Dr. Phukan’s scholarly output reflects a strong command over experimental and computational techniques in nonlinear optics. While citation metrics (such as h-index) are not listed here, her consistent publication in peer-reviewed journals and collaborations with research scholars illustrate high research productivity and relevance. Her ability to translate complex physical phenomena into practical simulations and fiber models underscores her technical depth and analytical skills.

🏫 Teaching Experience

With expertise in Engineering Physics, Electrodynamics, Laser Physics, Optoelectronics, and Atomic & Molecular Physics, Dr. Phukan brings a rich interdisciplinary perspective to the classroom. Her teaching approach combines fundamental theory with real-world applications, making her courses engaging and highly relevant to modern physics and engineering students.

🏆 Awards and Honors

In recognition of her outstanding contribution to education, Dr. Phukan received the Best Faculty Award in 2015 from Gyan Sagar Institution (now Royal Global University). This honor reflects her excellence in teaching, research guidance, and dedication to institutional development.

🌟 Legacy and Future Contributions

Dr. Devika Phukan continues to inspire through her intellectual rigor, mentorship, and commitment to scientific innovation. She stands as a role model for women in STEM, particularly in physics and photonics. With her ongoing research, active Ph.D. supervision, and dedication to teaching, she is poised to make further groundbreaking contributions in fiber optics and laser-based technologies.

Publications Top Notes

Analysis of the effect of Stimulated Brillouin Scattering Threshold (SBST) and Stokes power in single mode optical fibre of different characteristic profile by simulation

  • Authors: Partha Pratim Borah, Devika Phukan, Anurup Gohain Barua
    Journal: Journal of Optics
    Year: 2025

Modelling and analysis of amplitude, spatial domain, spatial grids, width and time steps of soliton wave with reference to energy

  • Authors: Bidish Borah, Devika Phukan, Anurup Gohain Barua
    Journal: Journal of Optics
    Year: 2025

Exploring Structural and Propagation Features of Photonic Crystal Fibers for Superior Ultrashort Pulse Delivery

  • Authors: Priyanka Talukdar, Devika Phukan
    Journal: Journal of Optics
    Year: 2025

A Comparative Analysis of Basic and Enhanced Hole Structures in Photonic Crystal Fibers

  • Authors: P. Talukdar, D. Phukan
    Journal: Journal of Optics
    Year: 2024

A Comparative Exploration of Femtosecond Optical Pulse Propagation in Hollow Core Photonic Crystal Fiber and Optical Fiber

  • Author: Devika Phukan
    Journal: Webology
    Year: 2023

 

 

Jerzy Dryzek | The matter particles | Excellence in Research Award

Prof. Dr. Jerzy Dryzek | The matter particles | Excellence in Research Award

Professor at Institute of Nuclear Physics PAS | Poland

Prof. Jerzy Dryzek is a renowned physicist specializing in solid state physics and positron annihilation spectroscopy, with over four decades of academic and research experience. A pioneer in experimental physics in Poland, he has played a central role in developing advanced laboratory techniques in the field, particularly at the Institute of Nuclear Physics PAN in Kraków. His extensive international collaborations and leadership in scientific projects underscore his lasting influence in materials science and nuclear physics.

👨‍🎓Profile

Scopus

ORCID

📚 Early Academic Pursuits

Dr. Dryzek embarked on his academic journey with a Master’s degree from the Academy of Mining and Metallurgy in Kraków (1975–1980), where he focused on the “Technology of thin films.” He simultaneously pursued another Master’s in Nuclear Physics from the Jagiellonian University in Kraków (1977–1981), conducting a thesis on the “Measurement of the positron lifetime in silver films.” His deep interest in positron-related phenomena led to his Ph.D. (1981–1986) in Solid State Physics, with a dissertation titled “Electrical conductivity and electrical properties of thin metallic films (Au, Ag, Cu).”

🧪 Professional Endeavors

Since 1987, Dr. Dryzek has held a permanent position at the Institute of Nuclear Physics in Kraków, where he has been instrumental in establishing and expanding the positron annihilation laboratory. His international exposure includes scientific visits to Münster University, Germany, Helsinki University of Technology, Finland, Texas Christian University, USA, and collaborative research at Chalmers University of Technology, Sweden, and KEK in Tsukuba, Japan. He also served as Professor at the University of Zielona Góra (2005–2009) and Opole University (2009–2014).

🔬 Contributions and Research Focus

Dr. Dryzek’s research focus lies in positron annihilation spectroscopy, with special emphasis on pulsed positron beams, two-dimensional Doppler broadening, and positron annihilation in flight. He has led multiple national and international research projects, exploring grain boundaries, resonance trapping, and nonhomogeneous systems. His innovative work includes the construction of Doppler broadening spectrometers and advancing methods of studying subsurface zones in metallic alloys.

🌍 Impact and Influence

Dr. Dryzek’s impact extends beyond laboratory research. Through his leadership in the Centre of Excellence ADREM, he contributes to applying physics to human health and environmental safety. His collaborative initiatives have fostered German-Polish scientific cooperation, and his lectures and research work have enriched institutions in Europe, the USA, and Japan. His influence is particularly notable in shaping positron annihilation research infrastructure in Poland.

📖 Academic Cites

Dr. Dryzek’s work has been widely cited in peer-reviewed journals and international conferences, especially in the context of tribology, surface studies, and positron annihilation in condensed matter. His habilitation thesis in 2001, titled “Positron annihilation characteristics in condensed matter,” laid the foundation for his recognition as an Assistant Professor and later Full Professor in 2012.

🛠️ Research Skills

Dr. Dryzek demonstrates expertise in experimental physics, with deep proficiency in positron annihilation techniques, Doppler spectroscopy, and positron beam construction. He is also skilled in research project management, having led numerous scientific grants, coordinated interdisciplinary networks such as POSMAT, and conducted technology-based studies on materials like polymers, metals, and minerals.

👨‍🏫 Teaching Experience

Alongside research, Dr. Dryzek has actively contributed to academic teaching, notably as a lecturer in physics at the Pedagogical University in Kraków (1990–1992) and as a visiting professor at international institutions. He played a significant role in educating students from Münster University, fostering cross-border scientific knowledge exchange under the German-Polish Collaboration framework.

🏆 Awards and Honors

Among his recognitions are several competitive research grants awarded by the Committee of Scientific Research in Poland, European Commission (COST Programs), and German-Polish Foundations. His leadership in teaching grants, instrument development, and joint international projects reflects the high regard of his contributions to science and education.

🔮 Legacy and Future Contributions

With a legacy rooted in scientific innovation, academic mentorship, and international collaboration, Dr. Dryzek has established himself as a pioneer in positron physics. His work continues to inspire future generations, and his efforts in network coordination, grant acquisition, and technical development ensure ongoing contributions to the fields of solid-state physics and material science. His vision for advancing positron annihilation studies remains a guiding light for both theoretical and applied physics communities.

Publications Top Notes

Superior barrier performance, mechanical properties and compostability in relation to supramolecular structure of renewable based poly(trimethylene furanoate) modified with suberic acid

  • Authors: A. Zubkiewicz, A. Szymczyk, J. Dryzek, V.M. Siracusa, N. Lotti
    Journal: European Polymer Journal
    Year: 2025

Positronium Formation on the Rhenium Surface Studied by Slow Positron Measurements

  • Authors: J. Dryzek, M.O. Liedke, M. Butterling, E. Dryzek
    Journal: Physica Status Solidi (B) Basic Research
    Year: 2025

Influence of flexible segment length on the phase structure and properties of poly(hexamethylene 2,5-furandicarboxylate)-block-biopolytetrahydrofuran copolymers

  • Authors: S. Paszkiewicz, K. Walkowiak, I. Irska, Z.J. Rozwadowski, J. Dryzek
    Journal: Journal of Applied Polymer Science
    Year: 2024

Positron Annihilation and EBSD Studies of Subsurface Zone Created During Friction in Vanadium

  • Authors: J. Dryzek, M.X. Wróbel
    Journal: Journal of Tribology
    Year: 2023

Influence of the positron implantation profile on the study of the defect depth distribution by the positron annihilation technique

  • Authors: J. Dryzek
    Journal: Journal of Applied Physics
    Year: 2023