Yueling Yang | High energy physics | Best Researcher Award

Prof. Yueling Yang | High energy physics | Best Researcher Award

Professor at Henan Normal University | China

Yueling Yang is a Professor of Physics at Henan Normal University, specializing in theoretical particle physics. With extensive expertise in weak decays, quantum chromodynamics (QCD), and the phenomenology of B mesons, she has established herself as a prominent researcher in the field. Over the years, she has progressed from an Assistant Professor to a Professor, teaching and conducting research at one of China’s leading institutions in the realm of theoretical physics.

👨‍🎓Profile

Scopus

ORCID

📚Early Academic Pursuits

Yueling Yang’s academic journey began at Yanbei Normal University, where she obtained her Bachelor of Science in Physics (2000). She pursued her Master of Science in Theoretical Physics and later earned her Ph.D. in Theoretical Physics from Henan Normal University in 2014. Her graduate education laid a solid foundation for her future research endeavors, shaping her interests in particle physics and QCD phenomena.

👩‍🏫Professional Endeavors

Yang’s professional career spans over two decades, with extensive experience at Henan Normal University since 2003. After serving as an Assistant Professor at Yuncheng University, she returned to Henan Normal University in 2006. Over time, she was promoted to Lecturer, then Associate Professor, and finally, Professor. She currently holds the position of Professor of Physics at the Institute of Particle and Nuclear Physics, making her a key figure in academic leadership and research excellence.

🔬Contributions and Research Focus

Yueling Yang’s research primarily focuses on theoretical particle physics, specifically the study of weak decays of B mesons and heavy-flavored mesons. She has contributed to the understanding of nonfactorizable corrections in weak decays and the application of QCD factorization methods to nonleptonic decays. Her contributions also extend to the phenomenology of particle decays, an area central to understanding the standard model and searching for new physics beyond it.

🌍Impact and Influence

Yueling Yang’s work has had a substantial impact on the field of theoretical physics. Her research not only advances fundamental theoretical concepts but also bridges the gap between theoretical predictions and experimental possibilities, helping lay the groundwork for potential future experimental investigations in particle physics. Her publications, including 61 refereed journal articles, demonstrate her ongoing contribution to the academic community, and her work is often cited by leading researchers in the field.

📚 Academic Cites

Yueling Yang’s research has been widely cited in academic journals such as Eur. Phys. J. C, Phys. Rev. D, and Chin. Phys. C, demonstrating the scholarly reach and relevance of his contributions. His recent work on QED corrections and factorization approaches continues to gain traction among peers in the theoretical physics community.

🧪 Research Skills

Prof. Yang excels in theoretical modeling, perturbative QCD, and computational analysis for particle physics processes. His methodical approach to applying QCD factorization and examining nonperturbative effects enables nuanced predictions of weak decay channels. These skills have been critical in acquiring competitive funding from agencies like the National Natural Science Foundation of China.

📖Teaching Experience

As a renowned educator, Yueling Yang has played a crucial role in shaping the academic development of many students. She has received multiple teaching awards, including the “Top 10 Distinguished Teachers” and the “Outstanding Teachers” awards from Henan Normal University. Her commitment to excellence in teaching is also reflected in her work as an Excellent Master’s Thesis Supervisor, an honor she will continue to hold into 2024.

🏅 Awards and Honors

Prof. Yang has received 6 major honorary titles, including:

  • 🏆 Excellent Master’s Thesis Supervisor of Henan Province (2024)

  • 🥈 Second Class Prize of the Henan Natural Science Award (2023)

  • 🌟 Outstanding Teacher and Example Lesson recognitions from Henan Normal University (2018, 2021)

  • 🎓 Top 10 Distinguished Teachers (2015)

These accolades reflect his all-around excellence in both education and research.

🧬 Legacy and Future Contributions

Looking ahead, Prof. Yueling Yang continues to expand his research on new physics effects in heavy meson decays and aims to bridge theory with upcoming experimental data from international particle collider facilities. His legacy is being shaped not only through his scientific contributions but also by the next generation of physicists he mentors. With new research grants and international collaborations underway, Prof. Yang is poised to make even deeper contributions to the understanding of fundamental particles and forces.

Publications Top Notes

The QED nonfactorizable correction to the semileptonic charmed three-body B decays

  • Authors: Yueling Yang, Liting Wang, Jiazhi Li, Qin Chang, Junfeng Sun
    Journal: European Physical Journal C
    Year: 2024

CEPC Technical Design Report: Accelerator

  • Authors: Waleed Abdallah, Tiago Carlos Adorno de Freitas, Konstantin G. Afanaciev, Tianlu Chen, Wei Chen
    Journal: Radiation Detection Technology and Methods
    Year: 2024

STCF conceptual design report (Volume 1): Physics & detector

  • Authors: M. N. Achasov, X. C. Ai, L. P. An, Baolin Hou, T. J. Hou
    Journal: Frontiers of Physics
    Year: 2024

Possibility of experimental study on nonleptonic weak decays

  • Authors: Yueling Yang, Liting Wang, Jinshu Huang, Qin Chang, Junfeng Sun
    Journal: Chinese Physics C
    Year: 2023

Feasibility of searching for the Cabibbo-favored D∗ → K ¯ π+, K ¯ ∗π+, K ¯ ρ+ decays

  • Authors: Yueling Yang, Kang Li, Zhenglin Li, Qin Chang, Junfeng Sun
    Journal: Physical Review D
    Year: 2022

 

Mohammed salah Abd El minem | High energy physics | Physics Excellence in Industry Award

Dr. Mohammed salah Abd El minem | High energy physics | Physics Excellence in Industry Award

Assistant Professor at Physics Department, Faculty of Science, Al-Azhar University, Egypt

Mohamed Salah Abdel-Moneim Youssef is an Assistant Lecturer at the Department of Physics at Al-Azhar University, Assiut, Egypt. He holds a Bachelor’s degree in Physics (2012) and a Master’s degree from Al-Azhar University with a focus on optical properties of BiI3 thin films. He has been actively involved in teaching, research, and scientific activities, contributing significantly to the field of material science and optoelectronics.

👨‍🎓Profile

Google scholar

ORCID

Early Academic Pursuits 🎓

Mohamed began his academic journey at Al-Azhar University, where he earned his Bachelor’s degree in Physics in 2012. His academic prowess and commitment to the field were recognized when he was appointed as a Demonstrator in the Department of Physics in 2018. This early appointment demonstrated his passion for physics and his readiness to contribute to the academic community.

Professional Endeavors 🏢

Since 2018, Mohamed has worked as an Assistant Lecturer at Al-Azhar University, where he teaches both undergraduate and preparatory dental students. His teaching responsibilities include specialized courses such as Solid-State Physics, Electronics, Semiconductors, Nuclear Physics, and Modern Physics. His teaching experience reflects his broad knowledge of physics and his ability to simplify complex concepts for diverse student groups.

Contributions and Research Focus 🔬

Mohamed’s primary research focuses on material science and optoelectronics, particularly the structural and optical properties of thin films. His Master’s thesis was centered around the impact of gamma-irradiation on BiI3 thin films, aiming to improve optoelectronic devices. Two notable publications emerged from this research, contributing to the understanding of optical parameters in photovoltaic and nonlinear applications.

His PhD research continued to explore materials science, specifically the substitution of BaTiO3 in lead borosilicate glass for ultrasonic applications, published in the Journal of Materials Science: Materials in Electronics.

Impact and Influence 🌍

Through his research and academic contributions, Mohamed has played a key role in advancing the study of materials for optoelectronic applications. His work on BiI3 thin films and BaTiO3-substituted borosilicate glass has the potential to impact industries related to photovoltaics, optoelectronics, and ultrasonic technologies. By focusing on improving material properties, his research has practical applications that can enhance the performance and efficiency of various technologies.

Academic Cites 📚

Mohamed’s research has garnered recognition in prominent scientific journals. His paper on BaTiO3 substitution in borosilicate glass was published in the Journal of Materials Science: Materials in Electronics (35 (22), 1534). Additionally, his Master’s research resulted in two significant papers that have been well-received in the field of optoelectronics. These publications contribute to the growing body of knowledge in the field of materials science and physics.

Research Skills 🔍

Mohamed is proficient in a variety of research methodologies, including material characterization techniques such as ball milling, gamma-irradiation, and thin film deposition. He has hands-on experience in structural and optical characterization of materials, specifically in the context of optoelectronic applications. His analytical skills and ability to synthesize complex data enable him to draw meaningful conclusions that enhance our understanding of material properties.

Teaching Experience 🎓

In addition to his research activities, Mohamed has been actively involved in teaching physics since 2018. He has taught a variety of courses, including both general physics and specialized courses in solid-state physics, semiconductors, and nuclear physics. His ability to communicate complex ideas clearly and his commitment to educating the next generation of scientists demonstrate his dedication to academic excellence.

Legacy and Future Contributions 🚀

Looking forward, Mohamed is poised to continue making significant contributions to materials science and optoelectronics. His ongoing research, particularly in optical and ultrasonic technologies, holds immense potential for future industrial applications. As he continues to expand his research, collaborate with other researchers, and enhance his teaching, Mohamed will likely leave a lasting impact on both the academic and industrial communities.

Publications Top Notes

Structural and optical investigations of multi-component lead-borosilicate glasses containing PbO, BaO, and TiO2

  • Authors: M. Salah, El Sayed Moustafa, A.A. Showahy
    Journal: Optical Materials
    Year: 2025

Influence of BaTiO3 substitution on structural and thermal response of lead borosilicate glass for ultrasonic applications

  • Authors: M. Salah, El Sayed Moustafa, A.A. Showahy
    Journal: Journal of Materials Science: Materials in Electronics
    Year: 2024

Influence of γ-irradiation dose on the structure, linear and nonlinear optical properties of BiI3 thick films for optoelectronics

  • Authors: AM Abdelnaeim, M Salah, E Massoud, A EL-Taher, ER Shaaban
    Journal: Digest Journal of Nanomaterials & Biostructures (DJNB)
    Year: 2022

Optical parameters of various thickness of bismuth (III) iodide thin films for photovoltaic and nonlinear applications

  • Authors: M Salah, A Abdelnaeim, S Makhlolf, A El-Taher, ER Shaaban
    Journal: International Journal of Thin Film Science & Technology
    Year: 2022

A new one-parameter lifetime distribution and its regression model with applications

  • Authors: MS Eliwa, E Altun, ZA Alhussain, EA Ahmed, MM Salah, HH Ahmed, …
    Journal: PLOS ONE
    Year: 2021