Chengyan Liu | Advanced Computing | Best Researcher Award

Prof. Chengyan Liu | Advanced Computing | Best Researcher Award

Henan University | China

Professor Chengyan Liu is a distinguished scholar in Condensed Matter Physics and Computational Physics, currently serving as a Full Research Professor at the Institute of Future Technologies, Henan University. He is a Doctoral Supervisor and a recognized Yellow River Scholar. With academic roots from Fudan University and an international postdoctoral stint at UC Irvine, Prof. Liu has become a leading authority on defect physics, semiconductor interfaces, and photoelectronic materials. His prolific output includes over 20 high-impact publications, multiple national research grants, and a reputation for pushing the boundaries of theoretical materials science.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Prof. Liu’s academic journey began with a B.Sc. in Physics from Zhengzhou University in 2011, followed by an M.Sc. in Theoretical Physics at the same institution in 2014. He then pursued a Ph.D. at Fudan University, completing it in 2017 under a rigorous theoretical physics program. During this formative period, he laid a solid foundation in quantum theory, computational modeling, and condensed matter systems, which would become central to his future research. His early interest in semiconductor materials and grain boundary phenomena steered him toward the path of advanced computational materials physics.

🏛️ Professional Endeavors 

After earning his Ph.D., Prof. Liu expanded his expertise as a postdoctoral researcher at the University of California, Irvine, where he worked in the Department of Astrophysics. He returned to China to join Henan University, rapidly progressing from Lecturer (2020) to Distinguished Professor, and most recently, a Fast-Tracked Full Professor (2024) under Henan’s elite talent program. At Henan, he spearheads critical research in the Quantum Materials and Quantum Energy Lab, leads provincial and national-level projects, and serves as a doctoral mentor. His role bridges academic leadership, institutional innovation, and scientific advancement.

🔬 Contributions and Research Focus

Prof. Liu specializes in theoretical studies of defect physics, excited-state dynamics, and optoelectronic behavior in multicomponent semiconductors. His pioneering work on Cuâ‚‚ZnSn(SSe)â‚„ solar cells, defect passivation, and p-type transparent conductors has led to material innovations critical for next-generation solar energy devices. He is known for integrating first-principles calculations, nonadiabatic molecular dynamics, and interface engineering to resolve longstanding efficiency bottlenecks in photovoltaics. His research also touches on phonon imaging, bandgap tuning, and nanostructure thermodynamics, cementing his role as a cross-disciplinary leader in materials computation and energy physics.

🌏 Impact and Influence

Prof. Liu’s research has significantly impacted the fields of photovoltaics, defect engineering, and quantum materials. His work in kesterite solar cells has advanced understanding of Voc-deficits and interface stability, directly influencing experimental design across China and abroad. He has published in Nature, Advanced Energy Materials, and npj Computational Materials, garnering citations and collaborations globally. As a corresponding or first author on most of his publications, he shapes scholarly discourse and sets research directions. His mentorship and visibility in national projects further amplify his influence on China’s renewable energy research landscape.

📚 Academic Citations

Prof. Liu has authored or co-authored over 20 peer-reviewed publications in journals with impact factors exceeding 50 (Nature, AFM, Nano Letters, etc.). His works are widely cited in the fields of materials chemistry, physics, and energy science. His contributions to defect theory, interface passivation, and electronic structure analysis are frequently referenced by experimentalists and theorists alike. Notably, his 2021 Nature paper on single-defect phonons and his 2017 work in Advanced Energy Materials are seminal in their respective domains. His consistent authorship and citation metrics mark him as a globally recognized scholar in computational materials science.

đź§  Research Skills

Prof. Liu possesses deep expertise in first-principles modeling, density functional theory (DFT), nonadiabatic dynamics, and defect analysis. His ability to combine quantum simulations with applied material design allows him to bridge theory and experiment. He has demonstrated prowess in bandgap engineering, passivation chemistry, and interface defect control. His skillset includes advanced tools like VASP, Quantum ESPRESSO, and phonon analysis frameworks. He leads multi-disciplinary teams, mentors graduate researchers, and designs custom simulation frameworks to address complex materials problems placing him at the frontier of computational materials innovation.

🎓 Teaching Experience

Since 2020, Prof. Liu has taught Advanced Quantum Mechanics for graduate students, delivering 54 hours annually. He is renowned for blending rigorous theoretical depth with computational applications, making abstract quantum concepts tangible. His textbook contribution, Study Guide to Griffiths’ Quantum Mechanics, demonstrates his pedagogical commitment and ability to clarify complex physics. Students under his mentorship have contributed to publications, signaling his effectiveness in academic training and talent development. Prof. Liu emphasizes problem-solving, analytical thinking, and research integration, providing a strong foundation for emerging physicists and materials scientists under his guidance.

🏆 Awards and Honors

Prof. Liu was awarded the prestigious Yellow River Scholar title a top provincial honor recognizing distinguished academic performance. His selection as a Fast-Tracked Full Professor under Henan’s High-Level and Urgently Needed Talent Program attests to his scientific merit and leadership potential. He has received multiple NSFC research grants and is the recipient of the Henan Excellent Young Scientists Fund. His inclusion on the Board of the Henan Physical Society further highlights his stature in the academic community. These honors reflect not only his past accomplishments but also his promise for future breakthroughs.

🚀 Legacy and Future Contributions

Prof. Liu is poised to leave a lasting legacy in quantum materials research and solar energy innovation. His pioneering work on transparent conductors, defect-tolerant semiconductors, and carrier lifetime enhancement will continue to shape the next wave of clean energy technology. As a mentor, author, and national project leader, he is building a robust academic ecosystem in Henan Province and beyond. Looking ahead, he aims to expand international collaborations, transition more research toward real-world applications, and foster interdisciplinary integration. His legacy will likely include both scientific excellence and the nurturing of future scientific leaders.

Publications Top Notes

  • Title: Defect inducing large spin orbital coupling enhances magnetic recovery dynamics in CrI3 monolayer
    Authors: Yu Zhou, Ke Zhao, Zhenfa Zheng, Huiwen Xiang, Jin Zhao,* Chengyan Liu,*
    Journal: npj Computational Materials
    Year: 2025

  • Title: Interfacial passivation of kesterite solar cells for enhanced carrier lifetime: Ab initio nonadiabatic molecular dynamics study
    Authors: Huiwen Xiang, Zhenfa Zheng, Ke Zhao, Chengyan Liu,* Jin Zhao,*
    Journal: Advanced Functional Materials
    Year: 2024

  • Title: Synergistic densification in hybrid organic-inorganic MXenes for optimized photothermal conversion
    Authors: Tong Xu, Shujuan Tan,* Shaoxiong Li, Tianyu Chen, Yue Wu, Yilin Hao, Chengyan Liu,* Guangbin Ji,*
    Journal: Advanced Functional Materials
    Year: 2024

  • Title: Defect-complex engineering to improve the optoelectronic properties of CuInS2 by phosphorus incorporation
    Authors: Huiwen Xiang, Jinping Zhang, Feifei Ren, Rui Zhu, Yu Jia, Chengyan Liu,*
    Journal: Physical Review Applied
    Year: 2023

  • Title: Analytical energy formalism and kinetic effects of grain boundaries: A case study of graphene
    Authors: Chengyan Liu, Zhiming Li, Xingao Gong,*
    Journal: Applied Physics Letters
    Year: 2024

 

Lindobuhle Miya | Data Analysis Techniques | Best Researcher Award

Mr. Lindobuhle Miya | Data Analysis Techniques | Best Researcher Award

PhD student at University of Johannesburg, South Africa

Lindobuhle Alfred Miya is a modest and daring young researcher with a strong background in chemistry, physics, and nanoscience. He is currently pursuing a Doctor of Philosophy in Chemistry at the University of Johannesburg, focusing on improving supercapacitor performance through his research on cobalt-based materials. With a passion for renewable energy, Lindobuhle’s research aims to contribute to the development of high-performance energy storage systems. His previous studies at the University of the Free State involved in-depth research on rare-earth doped zinc selenide for light-emitting materials. Along with his academic work, he has demonstrated leadership in peer facilitation and mentorship. Lindobuhle is eager to make a significant impact in the scientific community through publications and presentations, with aspirations to advance his career through collaborative efforts in a fast-paced environment.

👨‍🎓Profile

🎓Education 

Lindobuhle Alfred Miya’s academic journey began with a Bachelor of Science in Chemistry and Physics from the University of the Free State, where he developed a strong foundation in scientific principles. He continued his education with a Master’s in Nanoscience (2020-2023), researching rare-earth doped zinc selenide for light-emitting materials. His work employed advanced characterization techniques such as X-ray diffraction, scanning electron microscopy, and photoluminescence spectroscopy, leading to significant discoveries regarding the luminescence efficiency of doped materials. Currently, he is working toward his PhD in Chemistry at the University of Johannesburg, where his research is focused on enhancing supercapacitor performance through cobalt-based materials. Using modern electrochemical techniques, Lindobuhle is exploring energy storage applications with a specific focus on cycling stability and rate capability. His educational pursuits reflect his dedication to pushing the boundaries of materials science and energy storage technologies.

💼Professional Experience 

Lindobuhle Alfred Miya has gained valuable experience through various academic and mentorship roles. He served as a Peer Facilitator at the University of the Free State from 2019 to 2021, where he assisted students with supplemental instruction, learning facilitation, and assessment development. This role enhanced his leadership and communication skills, fostering his ability to guide peers effectively. Lindobuhle is currently engaging in Peer Mentorship at the University of Johannesburg, where he provides guidance and emotional support to his mentees, sharing his research experiences and encouraging the development of professional networks. These roles have helped him refine his ability to foster student engagement, while promoting self-sufficiency among mentees. His involvement in both peer learning and mentorship has provided him with a unique perspective on fostering collaboration and teamwork, crucial aspects of his research career as he continues to evolve in a fast-paced scientific environment.

🏅Awards and Honors 

Lindobuhle Alfred Miya has been recognized for his excellence in both research and academic pursuits. He earned a Scholarship at the University of the Free State for his outstanding work in Nanoscience, which helped propel him into more advanced studies. His achievements in research were also highlighted at the Research Conference 2022, where he discussed innovation and the use of research to improve humanity. Lindobuhle’s academic accomplishments also extend to his athletic achievements, including his Eastern Free State Cross Country Championship win in 2016. He has received commendations for his contributions to scientific research and is recognized for his commitment to improving energy storage technologies. His work on ZnSe doped with Yb3+ has been widely published, including in the Materials Today Communications journal. Lindobuhle’s awards underscore his dedication to both his academic growth and his contributions to society through research.

🔬Research Focus 

Lindobuhle Alfred Miya’s primary research focus is on enhancing the performance of supercapacitors through the development of cobalt-based materials for energy storage applications. His current research at the University of Johannesburg explores various synthesis methods, including solid-state reactions, hydrothermal synthesis, and wet chemical processes, to improve the electrochemical properties of these materials. Using advanced electrochemical techniques such as cyclic voltammetry, galvanostatic charge-discharge testing, and electrical impedance spectroscopy, Lindobuhle is assessing critical performance parameters, including specific capacitance, cycling stability, and rate capability. His work is pivotal in the development of high-performance energy storage devices, contributing to renewable energy applications. Additionally, his previous research in nanoscience focused on rare-earth doped ZnSe, where he investigated its potential for optoelectronic applications. Lindobuhle’s research is deeply aligned with the growing demand for advanced materials in both energy storage and optical technologies.

🧠Research Skills 

Lindobuhle Alfred Miya possesses a diverse set of research skills crucial for his studies in materials science and energy storage. He has gained expertise in various synthesis methods such as solid-state reactions, hydrothermal synthesis, and wet chemical processes to develop and enhance the properties of cobalt-based materials for supercapacitors. His technical skills extend to advanced characterization techniques, including X-ray diffraction, Transmission Electron Microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Lindobuhle is proficient in using electrochemical testing techniques, including cyclic voltammetry and galvanostatic charge-discharge testing, to evaluate the performance of energy storage devices. His ability to assess structural, morphological, and optical properties of materials is further enhanced by his strong foundation in critical thinking, problem-solving, and analytical skills. These research skills are integral to his ability to conduct high-quality research in nanoscience and energy storage technologies.

Publications Top Notes

Structure and optical properties of Er3+ doped ZnSe nanoparticles

  • Authors: L.A. Miya, L.F. Koao, S.V. Motloung, D.D. Hile, H.C. Swart, T.E. Motaung
    Journal: Optical Materials
    Year: 2024

Study of the structural, morphological and optical properties of ZnSe doped with Yb3+

  • Authors: L.A. Miya, S.V. Motloung, T.E. Motaung, H.C. Swart, D.D. Hile, L.F. Koao
    Journal: Materials Today Communications
    Year: 2022

Radomira Lozeva | Computational Methods | Best Researcher Award-3369

Dr.Radomira Lozeva| Computational Methods | Best Researcher Award

Dr Radomira Lozeva CNRS

Professional Profiles

Publications

Conclusion

Given her extensive research experience, significant contributions to nuclear physics, leadership in experiments, successful mentorship, and active engagement in the scientific community, Radomira Lozeva is highly suitable for both the Research for Community Impact Award and the Best Research Award. Her innovative work and dedication to advancing the field make her a strong contender for these prestigious recognitions.