Sheng Hsiung Chang | Experimental methods | Best Researcher Award

Prof. Sheng Hsiung Chang | Experimental methods | Best Researcher Award

Professor at National Taiwan Ocean University | Taiwan

Dr. Sheng Hsiung Chang is a Professor at the National Taiwan Ocean University. His extensive career in academia and research is marked by significant roles in leading institutions such as Chung Yuan Christian University (CYCU) and National Central University. Dr. Chang’s work has spanned across several pivotal research areas, particularly in semiconductor physics, optical physics, and perovskite optoelectronic devices. His achievements not only demonstrate his technical expertise but also highlight his commitment to academic leadership, mentorship, and advancing scientific knowledge.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Chang’s academic journey began with his postdoctoral research roles, first at Academia Sinica (2008-2010) and later at National Central University (2010-2012), where he gained foundational experience in semiconductor and optical physics. During these early years, he developed a strong interest in light-material interactions and functional thin films, fields that would shape his future research directions. His foundational work in nanotechnology and optoelectronics established the groundwork for his later academic and research career.

Professional Endeavors 🌍

Dr. Chang has held pivotal roles in academia, including Associate Professor and Professor at CYCU, where he also served as the Director of the Career Service Center (2020-2021). These positions reflect his commitment to fostering both the research and professional development of students. Additionally, he has contributed to the scientific community as an Editorial Board Member for journals such as Nanotechnology and Physics Bimonthly.

He has also demonstrated leadership in academic societies, serving as Vice Chairman (2021-2024) and Secretary General (2019-2020) of the Taiwan Vacuum Society. This involvement shows his dedication not only to research but also to promoting collaboration and innovation within the scientific community.

Contributions and Research Focus 🔬

Dr. Chang’s research is centered around perovskite optoelectronic devices, light-material interactions, plasmonic devices, nonlinear optics, and functional thin films. He is currently the Principal Investigator for various research projects funded by the National Science and Technology Council (NSTC) and the Ministry of Science and Technology (MOST). His groundbreaking work on perovskite thin films and their applications in photovoltaic cells is pushing the boundaries of renewable energy technologies. Through projects that explore optical coupling, material interfaces, and energy harvesting, Dr. Chang’s research is expected to revolutionize the optoelectronics field.

Impact and Influence 🌍

Dr. Chang’s contributions to the scientific community have had far-reaching implications, particularly in the area of perovskite solar cells. His work on improving photovoltaic performance and investigating interfacial contacts between organic and inorganic materials has the potential to enhance solar cell efficiency and sustainability. He is a key player in advancing technologies related to energy conversion, helping to foster sustainable solutions to global energy challenges. His leadership roles in academic societies have also expanded his influence and outreach in the scientific community.

Academic Citations 📈

Dr. Chang has an impressive publication record, with recent articles in high-impact journals such as Nanotechnology, Synthetic Metals, and Materials Science in Semiconductor Processing. His work is frequently cited by fellow researchers in the field of optoelectronics, particularly his studies on perovskite materials and their optical properties. These citations underscore the significance and influence of his research in both academia and industry.

Research Skills 🧑‍🔬

Dr. Chang possesses an extensive skill set in semiconductor physics, optical physics experiments, and theoretical computations. His research involves complex techniques such as material synthesis, thin film fabrication, and optical characterization. He has a deep understanding of light-matter interactions and their application to next-generation devices like solar cells and plasmonic devices. Additionally, his ability to bridge experimental techniques with theoretical models allows him to tackle complex challenges in material design and optoelectronic applications.

Teaching Experience 🏫

In his roles as a Professor and Associate Professor, Dr. Chang has mentored numerous graduate and postgraduate students in their research pursuits. His teaching approach is centered around encouraging critical thinking, innovation, and hands-on experimentation. His experience in guiding students and fostering academic growth aligns with his belief in the importance of collaboration and mentorship within academic settings. He also plays an active role in career development, helping students transition into the professional world with a strong foundation in research and industry-related skills.

Awards and Honors 🏆

Throughout his career, Dr. Chang has been the recipient of several prestigious awards and honors, recognizing his contributions to the fields of optical physics, semiconductor research, and perovskite optoelectronics. His ongoing recognition as a leader in nanotechnology and materials science reflects his consistent pursuit of excellence in both academic research and scientific innovation.

Legacy and Future Contributions 🔮

Dr. Chang’s work is poised to leave a lasting impact on the scientific community, particularly in the field of renewable energy and optoelectronics. As the principal investigator of major research projects, he is advancing the efficiency and sustainability of perovskite-based technologies, paving the way for affordable and efficient solar energy solutions. Dr. Chang’s future contributions to nanomaterials and functional thin films will likely continue to inspire scientific innovation, technological advancements, and environmental sustainability for years to come.

Publications Top Notes

Long room-temperature valley lifetimes of localized excitons in MoS2 quantum dots

  • Authors: H. Wang, Y. Chen, T.Y. Pan, Y. Lee, J. Shen
    Journal: Optics Express
    Year: 2024

Structural and excitonic properties of the polycrystalline FAPbI3 thin films, and their photovoltaic responses

  • Authors: Y. Huang, I.J. Yen, C. Tseng, A. Chandel, S.H. Chang
    Journal: Nanotechnology
    Year: 2024

Observations of two-dimensional electron gases in AlGaN/GaN high-electron-mobility transistors using up-converted photoluminescence excitation

  • Authors: Y. Chen, L. Chen, C.B. Wu, Y.J. Lee, J. Shen
    Journal: Optics Express
    Year: 2024

Efficient Optical Coupling between Dielectric Strip Waveguides and a Plasmonic Trench Waveguide

  • Authors: J. Wu, A. Chandel, C. Chuang, S.H. Chang
    Journal: Photonics
    Year: 2024

Enhancing the photovoltaic responses of MAPbI3 poly-crystalline perovskite films via adjusting the properties of PEDOT:PSS hole transport material with a low-polarity solvent treatment process

  • Authors: C. Tsai, S.N. Manjunatha, M. Sharma, L.B. Chang, C. Chang
    Journal: Materials Science in Semiconductor Processing
    Year: 2024

 

Ali Zaoui | Computational Methods | Computational Science Excellence Award

Prof. Ali Zaoui | Computational Methods | Computational Science Excellence Award

Djillali Liabes University of SIDI BELI ABBES | Algeria

Ali Zaoui is a Professor and Team Leader at the Physics Computational Materials Laboratory at the University of Sidi Bel Abbes, Algeria. With a distinguished career spanning several decades, he has made significant contributions to the field of computational materials science. Zaoui holds a PhD in Material Sciences and has taught in various capacities, progressing from General Physics to Nanotechnology at the University of Sidi Bel Abbes.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 🎓

Zaoui’s academic journey began with a B.Sc. in Physics from the University of Sidi Bel Abbes (1991-1996). He then pursued a M.Sc. in Solid State Physics (1998-2000), focusing on the electronic structure of BSb compounds using the FP-LAPW method. Zaoui continued his academic pursuit with a Ph.D. in Material Sciences (2000-2005), conducting groundbreaking research on TiCxN1−x, ZrxNb1−xC, and HfCxN1−x alloys through first-principles calculations. His early work established a foundation in ab-initio methods for studying the electronic structures of complex materials.

Professional Endeavors 🧑‍💼

Zaoui’s professional career includes roles as a Professor at the University of Sidi Bel Abbes, where he has been an influential faculty member since 2005. Additionally, he has held leadership roles, such as Team Leader and Director of various computational material science laboratories. His contributions extend beyond teaching, as he has also served in prominent positions such as Dean of the Faculty of Exact Sciences at the Djillali Liabes University and President of the Doctoral Formation Committee.

Contributions and Research Focus 🔬

Zaoui’s research focus spans a range of topics, with particular emphasis on computational physics, material science modeling, and condensed matter physics. His expertise lies in studying strongly correlated systems, magnetism, and superconductivity in atomic and condensed matter physics. His contributions in first-principles calculations have advanced the understanding of alloy properties, nanostructures, and electronic behaviors of various materials. Notable works include research on Hf3N4 and Zr3N4 compounds, as well as RE2Ni2Pb (R=Er, Ho), contributing to the advancement of material science through simulation and modeling techniques.

Impact and Influence 🌐

Zaoui’s impact in the field of computational material science is substantial, with significant influence in educating future generations of physicists. As a team leader, he has guided a range of research projects that continue to shape the field. His involvement in summer schools, conferences, and workshops on DFT, simulation methods, and materials modeling has contributed to international collaborations and the sharing of knowledge on an international scale. His research has shaped the academic landscape of materials science, particularly in Algeria and North Africa.

Academic Cites 📚

Zaoui’s academic works have gained significant recognition and have been cited in a wide array of material science journals. His research on Hf3N4 and Zr3N4 compounds, along with his contributions to optical properties of semiconductors and first-principles simulations, has been referenced widely in the scientific community. His work is highly regarded for its accuracy, innovation, and practical application in understanding the electronic structures of materials.

Research Skills 🧑‍🔬

Zaoui’s research is known for the depth of computational analysis and precision in applying first-principles calculations. He is highly skilled in using DFT, LDA+U methods, and ab-initio techniques to model complex material properties, from magnetism to superconductivity. His computational techniques allow for predictive modeling of material behaviors, an essential aspect in the development of new materials for various applications. Zaoui’s research is marked by his ability to bridge theory with practical outcomes, bringing computational insights into real-world scenarios.

Teaching Experience 📖

Zaoui has a rich and diverse teaching experience, spanning from general physics to specialized subjects like magnetism, thermodynamics, and nanotechnology. He has taught at both undergraduate and graduate levels, including at institutions like the Higher School of Computer Science of Sidi Bel Abbes. His teaching extends beyond the classroom, having led seminars, summer schools, and research conferences. His commitment to educating the next generation of physicists has made a lasting impact on the scientific community in Algeria.

Awards and Honors 🏆

While detailed awards are not listed in the provided information, Zaoui’s significant contributions to computational material science, his leadership in education, and his influential research undoubtedly position him for recognition in various academic circles. His leadership role in organizing scientific committees and overseeing doctoral training programs reflects his contribution to the academic excellence in material science.

Legacy and Future Contributions 🌱

Zaoui’s legacy is deeply rooted in his research, teaching, and leadership in computational materials science. His future contributions are expected to continue influencing the advancement of computational tools and material science innovations. With his focus on nanotechnology, superconductivity, and magnetism, Zaoui is well-positioned to make future breakthroughs in the understanding of next-generation materials. As his work continues to inspire the global research community, Zaoui’s legacy will likely shape the future of computational materials science and nanotechnology for many years to come.

Publications Top Notes

Impact of polymer binders on the aggregation modes of two-pieces CSH composites

  • Authors: J., Jia, Jiwei; A., Zaoui, Ali; W., Sekkal, Wassila
    Journal: Cement and Concrete Research, Year: 2025

Molecular modeling of clay minerals: A thirty-year journey and future perspectives

  • Authors: A., Zhou, Annan; J., Du, Jiapei; A., Zaoui, Ali; W., Sekkal, Wassila; M.S., Sahimi, Muhammad Syamim
    Journal: Coordination Chemistry Reviews, Year: 2025

Crystal structure and magnetic properties of lithium nitridoferrate: Density functional theory calculations

  • Authors: M.R., Aced, Mohammed Reda; N., Benayad, Nawel; F., Drief, F.; S., Kacimi, Salima; M., Djermouni, Mostefa
    Journal: Journal of Magnetism and Magnetic Materials, Year: 2025

Exploring superconducting signatures in high-pressure hydride compounds: An electronic-structure analysis

  • Authors: C., Mohammed Krarroubi; N., Benayad, Nawel; F., Benosman, Fayssal; S., Kacimi, Salima; A., Zaoui, Ali
    Journal: Physica C: Superconductivity and its Applications, Year: 2025

Influence of particle size distribution and normal pressure on railway ballast: A DEM approach

  • Authors: Z., Yan, Zhu; A., Zaoui, Ali; W., Sekkal, Wassila
    Journal: High-speed Railway, Year: 2025

Discrete-Element Method Study of the Effect of Ballast Layer Depth on the Performance of Railway Ballast Bed

  • Authors: Z., Yan, Zhu; A., Zaoui, Ali; W., Sekkal, Wassila
    Journal: International Journal of Geomechanics, Year: 2025

 

 

 

Yidong Zhang | Experimental methods | Best Researcher Award

Dr. Yidong Zhang | Experimental methods | Best Researcher Award

Beijing University of Posts and Telecommunications | China

Yidong Zhang is an emerging scientist specializing in the growth of silicon-based III-V materials and their applications in the high-quality growth of GaAs heteroepitaxial layers. Holding a doctoral degree awarded at Beijing University of Posts and Telecommunications (BUPT) in 2024, he is currently a postdoctoral fellow at the same institution. His research focuses on cutting-edge quantum mechanics and material science, aiming to advance semiconductor technologies through innovative approaches in material growth.

👨‍🎓Profile

Scopus

📚 Early Academic Pursuits

Yidong Zhang’s academic journey began with a keen interest in the intersection of physics and material science, which led him to pursue advanced studies at BUPT. During his doctoral studies, Zhang delved into topics related to material fabrication and quantum mechanics, particularly focusing on heteroepitaxy and substrate preparation for GaAs growth on silicon wafers. His passion for cutting-edge research and technical innovation drove him to explore this challenging area of material science.

💼 Professional Endeavors

As a postdoctoral fellow at BUPT, Yidong Zhang is continuing his work in the field of semiconductor material growth. His professional endeavors are centered on addressing complex challenges in the heteroepitaxial growth of GaAs layers, with a particular emphasis on developing sub-nano streaky surfaces on Si (001) substrates. This innovative research has the potential to significantly improve the quality and performance of III-V semiconductor materials, which are vital for advanced electronics and optoelectronics.

🔬 Contributions and Research Focus

Zhang’s primary research focus is on the fabrication and application of high-quality GaAs heteroepitaxial layers, with an emphasis on substrate surface preparation. The work on the Si (001) substrate with sub-nano streaky surfaces is crucial as it enables better material integration and growth precision, leading to enhanced performance in semiconductor devices. His contributions in the field of silicon-based III-V material growth are poised to advance semiconductor technology, especially in areas such as high-speed electronics and optical communications.

🌍 Impact and Influence

Yidong Zhang’s research is positioned to make a significant impact in the semiconductor industry. His innovative work in substrate preparation and material growth techniques has the potential to influence high-performance electronics, solar cells, LEDs, and laser technologies. Zhang’s approach is likely to transform industry standards by offering a more cost-effective and precise method for growing high-quality semiconductor materials. His work could ultimately enable the development of next-generation devices with enhanced efficiency and performance.

📑 Academic Cites

While Yidong Zhang’s publication record is still emerging, his research has been well-received in the academic community, with growing interest in his work on Si (001) substrate preparation and GaAs heteroepitaxy. As his body of work expands, the citations of his publications are expected to increase, further cementing his position as a leading researcher in the field of material science and semiconductor technology.

🛠️ Research Skills

Dr. Yidong Zhang demonstrates a strong command of several research skills, including experimental design, material characterization, and quantum mechanical simulations. His expertise in substrate preparation techniques, coupled with his knowledge of semiconductor growth processes, equips him with the necessary tools to tackle complex challenges in the field of heteroepitaxy. He has a high level of proficiency in nano-scale fabrication and materials analysis, making him a valuable asset in any research team focused on advanced material science.

👨‍🏫 Teaching Experience

As a postdoctoral fellow, Zhang has had opportunities to mentor graduate students and research assistants at BUPT. His role involves guiding students through complex experimental setups, helping them develop critical research skills, and encouraging a hands-on approach to material science. His commitment to education and knowledge sharing ensures the continued growth of the next generation of researchers in quantum mechanics and material fabrication.

🏅 Awards and Honors

Yidong Zhang’s early academic career has already been marked by several academic achievements, including the award of a Doctoral degree in 2024. While he is at the beginning of his postdoctoral journey, Zhang is a strong contender for recognition in the research community, particularly through awards like the Best Researcher Award. His work is likely to attract further accolades as it continues to push the boundaries of material science and semiconductor technology.

🌱 Legacy and Future Contributions

As Yidong Zhang progresses in his career, his legacy in the field of semiconductor research will likely be defined by his contributions to high-quality material growth techniques and the advancement of silicon-based III-V heteroepitaxy. His future contributions could lead to game-changing advancements in electronics and optoelectronics, as his work has the potential to revolutionize semiconductor integration. Looking ahead, Zhang’s research will continue to influence both academia and industry, laying the groundwork for next-generation technologies.

Publications Top Notes

The Si (001) substrate with sub-nano streaky surface: Preparation and its application to high-quality growth of GaAs heteroepitaxial-layer

  • Authors: Yidong Zhang, Jian Li, Xiaomin Ren, Chuanchuan Li, Xin Wei
    Journal: Applied Surface Science
    Year: 2024

InAs/GaAs quantum-dot lasers grown on on-axis Si (001) without dislocation filter layers

  • Authors: Yongli Wang, Bojie Ma, Jian Li, Xin Wei
    Journal: Optics Express
    Year: January 2023

Rapid and facile characterization of dislocations in cross-sectional GaAs/Si films using electron channeling contrast imaging

  • Authors: Chen Jiang, Hao Liu, Jian Li, Qi Wang
    Journal: Conference Paper
    Year: January 2023

Demonstration of room-temperature continuous-wave operation of InGaAs/AlGaAs quantum well lasers directly grown on on-axis silicon (001)

  • Authors: Chen Jiang, Hao Liu, Jun Wang, Yongqing Huang
    Journal: Applied Physics Letters
    Year: August 2022

 

 

Yue Song | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Yue Song | Experimental methods | Best Researcher Award

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences | China

Dr. Song Yue is an Associate Researcher at the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, specializing in high-power semiconductor lasers and the failure mechanisms of these lasers. With a PhD from the University of Chinese Academy of Sciences, she has made significant contributions to the field, including proposing new models on defect evolution and indium atom migration in semiconductor materials.

👨‍🎓Profile

Scopus

Early Academic Pursuits 📚

Dr. Song completed her PhD at the University of Chinese Academy of Sciences, where she gained deep knowledge in semiconductor lasers and the mechanisms affecting their efficiency and longevity. Her academic path was characterized by an early focus on understanding the complex behaviors of semiconductor materials under various operational conditions. Her research foundation laid the groundwork for her future innovations.

Professional Endeavors 💼

Dr. Song is an Associate Researcher at the Changchun Institute of Optics, Fine Mechanics and Physics. In this role, she has led numerous research projects, most notably focusing on high-power semiconductor lasers. She has been an integral part of key national research initiatives, including projects funded by the National Natural Science Foundation of China and the National Key Research and Development Program of China. These efforts have not only advanced her field but also brought significant funding and resources into her research domain.

Contributions and Research Focus 🔬

Dr. Song’s research is primarily focused on the development and efficiency enhancement of semiconductor lasers. Her contributions include the thermal defect evolution models for quantum wells in AlGaInAs and introducing a strained compensation layer in superlattice structures. These innovations are aimed at improving the performance and reliability of gain chips, which are central to high-power laser technology. She also proposed a novel approach to understanding indium atom migration in semiconductor materials using the dark state model, shedding light on failure mechanisms that affect the lifespan and stability of these lasers.

Impact and Influence 🌍

Dr. Song’s research has had a profound impact on the semiconductor laser industry, particularly by improving the efficiency and reliability of gain chips. Her findings are widely cited, and her work on thermal effects and indium atom migration has set new standards in the industry. Additionally, her involvement in developing group standards for the China Association of Automobile Manufacturers has led to practical applications of her research in the automotive sector.

Academic Cites 📑

Dr. Song has authored over 30 academic papers, including 14 SCI core papers as the first or corresponding author. Her work is frequently cited in the scientific community, particularly in the domains of semiconductor lasers and optical materials. She has also coauthored a monograph, expanding the breadth of her influence in the academic world.

Research Skills 🔧

Dr. Song is skilled in the theoretical modeling of semiconductor materials and laser systems. Her ability to develop defect models, atom migration theories, and structure enhancements demonstrates her expertise in both computational and experimental research. Her work is deeply rooted in quantum mechanics, material science, and optical engineering, making her a well-rounded researcher in the field.

Awards and Honors 🏅

Dr. Song has received multiple accolades recognizing her contributions, including:

  • High-level D Talents of Jilin Province
  • Dawn Talent title
  • Membership in the Changbai Mountain Leading Team
  • Changchun Institute of Optics Excellent Achievement Award
  • Institute’s Special Youth Reward Plan C-level award
  • Institute’s Innovation Practice Project Special Award
  • Recognition in the Wiley China Excellent Author Program

These honors reflect her outstanding contributions to both her field of research and the broader scientific community.

Legacy and Future Contributions 🌟

Dr. Song is poised to continue making groundbreaking contributions to semiconductor laser technology. Her work already impacts both academic research and industry applications, particularly in fields requiring high-efficiency lasers such as telecommunications, automotive technologies, and defense systems. As her research evolves, she is likely to contribute to advancements in quantum computing and photonic devices, leaving a lasting legacy in the world of optics and laser technology.

Publications Top Notes

High-power and ultra-wide-tunable fiber-type external-cavity diode lasers

  • Authors: Q. Cui, Y. Lei, C. Yang, L. Qin, L. Wang
    Journal: Optics and Laser Technology
    Year: 2025

Integrated Light Sources Based on Micro-Ring Resonators for Chip-Based LiDAR

  • Authors: L. Huang, C. Yang, L. Liang, Y. Ding, L. Wang
    Journal: Laser and Photonics Reviews
    Year: 2025

Recent Advances in Tunable External Cavity Diode Lasers

  • Authors: Y. Wang, Y. Song
    Journal: Applied Sciences (Switzerland)
    Year: 2025

Noise characteristics of semiconductor lasers with narrow linewidth

  • Authors: H. Wang, Y. Lei, Q. Cui, L. Qin, L. Wang
    Journal: Heliyon
    Year: 2024

Suparna Kar Chowdhury | Experimental methods | Women Researcher Award

Prof. Suparna Kar Chowdhury | Experimental methods | Women Researcher Award

Jadavpur University | India

Dr. Suparna Kar Chowdhury is a distinguished Professor in the Electrical Engineering Department at Jadavpur University, Kolkata, India. With a career spanning over three decades, she has earned recognition for her deep expertise in machine analysis and design. As a senior IEEE member and an active volunteer, Dr. Chowdhury is a leading figure in both academic and professional circles in Electrical Engineering.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Chowdhury’s journey in Electrical Engineering began when she graduated in 1987 from Jadavpur University, Kolkata. She continued to excel academically, earning her M.Tech degree in Electrical Engineering from the prestigious Indian Institute of Technology (IIT), Kharagpur, in 1989. Her commitment to learning and her strong academic foundation led her to pursue a Ph.D. in Electrical Engineering from Jadavpur University in 2000, where she expanded her knowledge in advanced topics within the field.

Professional Endeavors 💼

After her graduation, Dr. Chowdhury briefly worked as an engineer at M/S M N Dastur & Co., gaining practical industry experience. In 1990, she began her academic career as an Assistant Professor at Jadavpur University and quickly gained recognition for her contributions to the academic community. Over the years, she has climbed the ranks, ultimately achieving the position of Professor in the Electrical Engineering Department, where she continues to inspire future engineers.

Contributions and Research Focus 🔬

Dr. Chowdhury’s research focus lies in machine analysis and design. She has made significant contributions to the advancement of these fields, publishing around 40 papers in National and International conferences and journals. Her research is aimed at improving the design and efficiency of electrical machines, and she has played a key role in shaping the landscape of machine engineering through her innovative studies.

Impact and Influence 🌍

As a senior member of IEEE (USA) and a leader in the IEEE Kolkata Section, Dr. Chowdhury has had a substantial impact on the global engineering community. Her leadership roles, including serving as section secretary, treasurer, and chair of the Power & Energy chapter, have allowed her to influence the growth and development of the IEEE Kolkata Section. Through these leadership positions, Dr. Chowdhury has contributed to expanding the reach of IEEE’s initiatives in India and globally.

Academic Cites 📑

With a vast publication record and extensive involvement in academic circles, Dr. Chowdhury has contributed to numerous research endeavors, producing impactful work that has shaped the current understanding of machine design and analysis. Her publications have garnered attention within the academic community, and her research insights continue to influence future studies in the field.

Research Skills 🔧

Dr. Chowdhury’s research skills encompass advanced machine design, electrical system modeling, and optimization techniques. She has worked on complex analytical methods to solve engineering challenges, contributing to her reputation as an expert in the field of electrical machine analysis. Her ability to bridge theoretical knowledge with practical application has made her research highly valuable to both academia and industry.

Teaching Experience 🏫

As an Assistant Professor and later as a Professor, Dr. Chowdhury has been an influential educator, guiding students in the Electrical Engineering Department at Jadavpur University. With over three decades of teaching experience, she has mentored numerous students and has successfully supervised five Ph.D. theses and sixteen M.E. theses. Her commitment to education and student development remains a key part of her legacy.

Awards and Honors 🏅

Dr. Chowdhury has received multiple accolades for her academic and professional contributions. Notably, her status as a senior member of IEEE and her leadership roles within the IEEE Kolkata Section underscore her commitment to advancing electrical engineering. These honors reflect her dedication and passion for the field, as well as her ability to inspire others.

Legacy and Future Contributions 🌱

Dr. Suparna Kar Chowdhury’s legacy lies in her remarkable impact on machine analysis and design in Electrical Engineering, as well as her leadership within the IEEE community. She has left a lasting mark on both her students and colleagues through her innovative research, mentorship, and service. Looking forward, Dr. Chowdhury is expected to continue advancing research in machine analysis, contributing to sustainable technologies, and inspiring the next generation of engineers. Her continued commitment to academia and research excellence will undoubtedly shape the future of Electrical Engineering.

Publications Top Notes

  • Estimation of Induction Motor Equivalent Circuit Parameters and Losses from Transient Measurement
    Authors: Diptarshi Bhowmick, Suparna Kar Chowdhury
    Year: Dec 2024

  • A New Nonisolated Bidirectional DC-DC Converter with High Voltage Conversion Ratio
    Authors: Supratik Sikder, Debashis Chatterjee, Suparna Kar Chowdhury
    Year: Dec 2023

  • Performance analysis of different rotor configuration of LSPMSM for Electric Vehicles
    Authors: Mousumi Jana Bala, Chandan Jana, Suparna Kar Chowdhury, Nirmal Kumar Deb
    Year: Dec 2022

  • Sensor Less Performance Estimation of Induction Motor
    Authors: Diptarshi Bhowmick, Suparna Kar Chowdhury
    Year: Dec 2022

  • Performance and Temperature Estimation of Induction Motor from Transient Measurement
    Authors: Diptarshi Bhowmick, Suparna Kar Chowdhury
    Year: Dec 2020

 

Radomira Lozeva | Computational Methods | Best Researcher Award-3369

Dr.Radomira Lozeva| Computational Methods | Best Researcher Award

Dr Radomira Lozeva CNRS

Professional Profiles

Publications

Conclusion

Given her extensive research experience, significant contributions to nuclear physics, leadership in experiments, successful mentorship, and active engagement in the scientific community, Radomira Lozeva is highly suitable for both the Research for Community Impact Award and the Best Research Award. Her innovative work and dedication to advancing the field make her a strong contender for these prestigious recognitions.