Abdelmounaim Chetoui | Experimental methods | Academic Excellence in Applied Physics Award

Dr. Abdelmounaim Chetoui | Experimental methods | Academic Excellence in Applied Physics Award

Research assistant, CRTSE, Algeria

Dr. Abdelmounaim Chetoui is a dedicated researcher in materials physics, specializing in semiconductors, thin films, and nanostructures. With over six years of research experience, he is currently affiliated with the Research Center in Semiconductor Technology for Energetics (CRTSE) in Algiers. He holds a Ph.D. in Materials Physics from USTHB, Algeria, and has pursued academic training in both Algeria and France. His expertise includes photoluminescence, spray pyrolysis, and nanomaterials for photovoltaics and gas sensors. Dr. Chetoui has an excellent grasp of interdisciplinary research and experimental design.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Chetoui began his academic journey with a Bachelor’s in Fundamental Physics from the University of Sétif, followed by a Maitrise and Master’s in Materials Engineering from the University of Strasbourg, France. His academic focus was on solid-state physics and materials science, laying a strong foundation for his research career. He culminated this phase with a Doctorate in Materials Physics from USTHB, where his doctoral work explored the optical and structural behavior of semiconductor thin films, especially in photovoltaics and gas sensing.

🏢 Professional Endeavors

Dr. Chetoui has held research positions at prestigious Algerian institutions including CDTA and CRTSE, contributing extensively to semiconductor research and device engineering. As a Research Engineer Advisor, he led multiple projects on metallic oxide synthesis, spray pyrolysis device design using SolidWorks, and thin film characterization. His current role at CRTSE involves cutting-edge material synthesis for energy applications. From 2013 to 2014, he also served as an Assistant Teacher at USTHB, mentoring students in electricity and mechanics, showcasing his dedication to both research and education.

🔬 Contributions and Research Focus

Dr. Chetoui’s research revolves around nanostructured semiconductors, luminescent materials, and thin-film deposition techniques. He has made significant contributions to the study of ZnS, ZrO₂, V₂O₅, NiO, and perovskite-based materials through both experimental and DFT (density functional theory) studies. His work integrates photoluminescence, photocatalysis, and nanocomposites for energy conversion and environmental remediation. A key focus of his work is the use of spray pyrolysis, a cost-effective technique for fabricating high-performance thin films for solar energy and sensing applications.

🌍 Impact and Influence

Dr. Chetoui’s research has contributed to the development of nanomaterials with enhanced optical and photocatalytic properties, impacting fields such as renewable energy, environmental cleanup, and nanoelectronics. His collaborative studies on Zn1−xMgxS, SiNx, and rGO-based nanostructures offer valuable insights into material optimization for visible-light-driven photocatalysis. His role in cross-disciplinary teams and international publication record helps bridge theoretical understanding with practical applications. These contributions make him a valuable asset in advancing sustainable nanotechnology in the MENA region and beyond.

📚 Academic Cites

Dr. Chetoui has co-authored over 20 international publications in reputable journals like Applied Physics A, Physica B, Solid State Sciences, and Diamond & Related Materials. His work on photocatalytic nanocomposites, luminescent thin films, and solid-state phosphors has attracted attention in the materials science and semiconductor communities. Notable studies include his 2024 research on ZrV₂O₇ nanoparticles, Eu³⁺-doped phosphors, and graphene-based heterojunctions, contributing to an increasing citation index and strengthening his global scientific footprint.

🧪 Research Skills

Dr. Chetoui has hands-on expertise in spray pyrolysis, solvothermal synthesis, and solid-state reactions. His technical arsenal includes XRD, SEM, AFM, FTIR, and photoluminescence spectroscopy. Adept in software like SolidWorks, he has designed customized deposition systems and analyzed complex materials using optical and structural simulation tools. His research merges materials chemistry, device engineering, and physics, demonstrating analytical precision, instrumental knowledge, and problem-solving ability critical for experimental physics and nanotechnology development.

👨‍🏫 Teaching Experience

As an Assistant Teacher at USTHB, Dr. Chetoui taught physics tutorials in electricity and mechanics, demonstrating strong pedagogical skills. His teaching involved hands-on lab supervision, conceptual instruction, and assessment design, providing foundational physics knowledge to undergraduate students. His bilingual fluency in French and English further enhances his communication in diverse academic settings. He is well-prepared to deliver graduate-level lectures on semiconductors, thin film physics, and optical materials, making him a valuable educator and mentor in higher education.

🏅 Awards and Honors

While explicit awards are not listed, Dr. Chetoui’s academic journey through international institutions, his research output, and consistent participation in scientific events demonstrate high merit and recognition in his field. Presenting at over 10 national and international conferences, including ICASE, EMS, and ICMS, he has contributed valuable insights on ZnS-based nanomaterials, luminescent oxides, and environmental applications of nanotechnology. His selection to present at these forums reflects peer acknowledgment and research credibility in applied materials science.

🌟 Legacy and Future Contributions

Dr. Chetoui’s work positions him to make impactful contributions to next-generation nanomaterials for energy harvesting, environmental monitoring, and photonics. He is expected to lead collaborative research, initiate international projects, and expand into emerging materials platforms like 2D materials and hybrid perovskites. With a commitment to sustainable innovation and scientific mentorship, he is poised to leave a lasting legacy in applied physics and nanotechnology. His future efforts will likely strengthen the scientific community’s ability to tackle climate, energy, and material efficiency challenges.

Publications Top Notes


Band Structure Engineering in InVO₄/g-C₃N₄/V₂O₅ Heterojunctions for Enhanced Type II and Z-Scheme Charge Transfer

  • Authors: Abdelmounaim Chetoui, Ilyas Belkhettab, Amal Elfiad, Ismail Bencherifa, Messai Youcef
    Journal: Vacuum
    Year: 2025

Effect of Li⁺ Co-doping on Structural, Morphological and Photoluminescence Spectroscopy of ZnO: Eu³⁺ Nanocrystal Powders

  • Authors: Wafia Zermane, Lakhdar Guerbous, Widad Bekhti, Ahmed Rafik Touil, Mohamed Taibeche, Abdelmounaim Chetoui, Lyes Benharrat, Nadjib Baadji, Mustapha Lasmi, Abdelmadjid Bouhemadou
    Journal: Ceramics International
    Year: 2025

An In-Depth Photoluminescence Investigation of Charge Carrier Transport in ZrO₂|V₂O₅ Type I Junction: Probing the Production of Hydroxyl Radicals

  • Authors: Abdelmounaim Chetoui, Ilyas Belkhettab, Amal Elfiad, Youcef Messai, Aicha Ziouche, Meftah Tablaoui
    Journal: Applied Surface Science
    Year: 2024

Elaboration and Characterization of Amorphous Silicon Carbide Thin Films (a-SiC) by Sputtering Magnetron Technique for Photoelectrochemical CO₂ Conversion

  • Authors: Abdelmounaim Chetoui
    Journal: Silicon
    Year: 2022

Physicochemical Investigation of Pure Cadmium Hydroxide Cd(OH)₂ and Cd(OH)₂–CdO Composite Material Deposited by Pneumatic Spray Pyrolysis Technique

  • Authors: Abdelmounaim Chetoui
    Journal: Applied Physics A
    Year: 2022

 

Changjun Chen | Experimental methods | Best Researcher Award

Prof. Changjun Chen | Experimental methods | Best Researcher Award

Director at Soochow University | China

Prof. Changjun Chen is a renowned expert in laser materials processing and holds a professorship at the Laser Processing Research Center, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China. He is also the Secretary General of both the Laser Industry Alliance of G60 S&T Innovation Valley of Yangtze River and the Jiangsu Province Laser Innovation. Prof. Chen’s research spans a variety of cutting-edge applications, particularly in laser welding, laser metal deposition, laser-assisted material removal, and surface modification. He has significantly contributed to the development of new techniques in these areas that are pivotal for industrial applications, especially in aerospace, automotive, and energy sectors.

👨‍🎓Profile

Scopus 

ORCID

📚 Early Academic Pursuits

Prof. Chen began his academic journey by obtaining his Bachelor’s degree (BE) in 2000 from Northeastern University in Shenyang, China. He further advanced his education by earning a Ph.D. in 2007 from the Institute of Metal Research, Chinese Academy of Sciences, specializing in materials science. His early academic pursuits laid a strong foundation for his later contributions to laser processing and materials science.

💼 Professional Endeavors

Prof. Chen’s professional career began in 2007 when he joined Wuhan University of Science and Technology, where he served as an associate professor until 2011. His career took a major leap when he joined Soochow University in 2011, attaining the title of Professor. His academic journey also includes a significant research visit to Columbia University in 2013-2014, supported by the China Scholarship Council. This international exposure has allowed him to collaborate and interact with leading researchers across the globe.

🔬 Contributions and Research Focus

Prof. Chen’s research is focused on laser materials processing and its industrial applications. His group explores a range of cutting-edge topics, including:

  • Laser Metal Deposition: Particularly for superalloys and high-strength steels like high-speed steel, which are essential for both remanufacturing and manufacturing processes.

  • Laser-Forming of Metallic Foam: For applications in aerospace and automotive industries, focusing on shock absorption, weight reduction, and sustainability.

  • Laser Cladding for Gas Turbines: Optimizing superalloys for use in extreme environments.

  • Laser Welding/Sealing of Glass to Metal/Alloy: A highly specialized area of industrial processing.

His group’s novel experimental setups, combined with materials characterization and theoretical/numerical models, aim to improve quality and productivity in manufacturing processes.

🌍 Impact and Influence

Prof. Chen’s work has had a profound impact on both academia and industry. His research in laser processing has directly contributed to increased productivity, improved quality, and enhanced efficiency in manufacturing and remanufacturing industries. Prof. Chen’s involvement in laser innovation not only benefits industrial applications but also supports sustainable practices, notably through the development of metal foams for weight reduction in transportation and aerospace sectors.

📑 Academic Cites

With over 200 peer-reviewed papers published, Prof. Chen’s work is highly regarded in the scientific community. His contributions have earned him significant recognition, with over 100 of these papers cited in SCI-indexed journals. His publications reflect his deep expertise in materials science and laser processing technology.

🛠️ Research Skills

Prof. Chen’s research is characterized by his innovative approach to laser material interactions, which involves a balance of theoretical investigation and hands-on experimentation. His skills in materials characterization, numerical simulations, and process optimization have enabled him to make significant advancements in laser welding, cladding, and deposition processes. Furthermore, his expertise in foam shaping via laser forming has contributed to the development of sustainable manufacturing techniques for industries like automotive and aerospace.

🏅 Teaching Experience

In addition to his research, Prof. Chen has a long history of mentoring students and professionals in the field of materials science and laser processing. As a professor at Soochow University, he has played a pivotal role in shaping the careers of countless graduate and post-graduate students. His teaching style emphasizes the integration of theoretical knowledge with practical application, ensuring that his students are well-prepared for careers in both academia and industry.

🌱 Legacy and Future Contributions

Prof. Chen’s work has laid a solid foundation for future advancements in laser processing technologies. His contributions to sustainable manufacturing through laser-assisted foam shaping and metal deposition are expected to shape the future of the aerospace, automotive, and energy industries. His research group continues to push the boundaries of what is possible in laser-based manufacturing, and his global collaborations ensure that his influence will continue to grow, benefiting industries worldwide.

Publications Top Notes

Effect of composite adding Ta and Mo on microstructure and properties of W-Mo-Cr high-speed steel prepared by laser metal deposition

  • Authors: M. Zhang, C. Chen (Changjun)
    Journal: Applied Physics A: Materials Science and Processing
    Year: 2025

The influence of anodization on laser transmission welding between high borosilicate glass and TC4 titanium alloy

  • Authors: L. Li (Lei), C. Chen (Changjun), C. Li (Chunlei), C. Tian (Chen), W. Zhang (Wei)
    Journal: Optics and Laser Technology
    Year: 2025

Effect of High-Temperature Oxidation on Laser Transmission Welding of High Borosilicate Glass and TC4 Titanium Alloy

  • Authors: M. Xu (Mengxuan), C. Chen (Changjun), J. Shao (Jiaqi), M. Zhang (Min), W. Zhang (Wei)
    Journal: Journal of Materials Engineering and Performance
    Year: 2025

Comparative Study of the Effects of Different Surface States During the Laser Sealing of 304 Steel/High-Alumina Glass

  • Authors: C. Chen (Changjun), B. Bao (Bei), J. Shao (Jiaqi), M. Zhang (Min), H. Liu (Haodong)
    Journal: Coatings
    Year: 2025

Effects of Different Surface Treatment Methods on Laser Welding of Aluminum Alloy and Glass

  • Authors: C. Chen (Changjun), L. Li (Lei), M. Zhang (Min), W. Zhang (Wei)
    Journal: Coatings
    Year: 2024

 

Jianwen Yang | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Jianwen Yang | Experimental methods | Best Researcher Award

Associate Professor, Master’s Supervisor, Deputy Head of the Physics Department at Shanghai Normal University | China

Dr. Jianwen Yang is an Associate Professor at Shanghai Normal University, holding a Ph.D. in Physical Electronics from Fudan University. His primary research focus lies in oxide semiconductors and information display technologies. With significant experience in addressing instability issues in industrial devices, he has contributed to analyzing the performance of a-IGZO TFTs in companies like TSMC and AUOtronics. His innovative work in n-type tin oxide-based TFTs and indium-free doped tin oxide-based TFTs has led to breakthroughs in the field, providing devices with superior electrical characteristics.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 📚

Dr. Yang’s academic journey began with a solid foundation in Physical Electronics, completing his Ph.D. at Fudan University. During his early studies, he developed a keen interest in the intersection of material science and electronics, which led him to explore oxide thin-film transistors (TFTs) as a promising avenue for future advancements. His focus on new materials and material simplification laid the groundwork for his later innovations in tin oxide-based TFTs, a critical area in the development of modern information display technologies.

Professional Endeavors 💼

Dr. Yang’s professional career has been marked by collaborations with prominent industry leaders like TSMC and AUOtronics, where he contributed to solving the instability challenges in industrialized a-IGZO TFTs. These efforts have provided valuable insights into the performance optimization of thin-film transistors, further driving the industry forward. His participation in national projects, such as those funded by the National Natural Science Foundation of China (NSFC), also highlights his commitment to advancing the field through both academic research and real-world applications.

Contributions and Research Focus 🔬

Dr. Yang’s pioneering research in n-type tin oxide-based TFTs led to the introduction of novel indium-free doped tin oxide materials like SnWO, SnSiO, and SnNiO, which have all exhibited superior electrical characteristics. His work on comparing top/bottom-gate a-IGZO TFTs under varying stress conditions provided valuable insights into threshold voltage shifts and carrier concentration variations, significantly impacting the design and stability of oxide semiconductors in practical applications. He has consistently pushed the boundaries of material research, particularly in the flexible electronics sector.

Impact and Influence 🌍

Dr. Yang’s groundbreaking research has had a profound impact on the development of oxide semiconductor devices, particularly in TFT technology. His innovative approaches have been cited in multiple review articles, and his work continues to influence both academic researchers and industry practitioners. His research on indium-free tin oxide-based TFTs has not only enriched academic literature but also paved the way for more sustainable and efficient solutions in the information display industry. The superior electrical characteristics of his materials have positioned them as viable alternatives to traditional indium-based materials, which are costly and scarce.

Academic Cites 📈

Dr. Yang has published over 38 journals in top-tier scientific databases, including SCI and Scopus, with his work receiving 11 citations. His innovative research has been referenced in numerous review articles, further establishing him as a thought leader in his field. These citations reflect the widespread recognition of his research’s significance, and his publications continue to influence the academic community’s understanding of oxide semiconductors and TFT stability.

Research Skills 🛠️

Dr. Yang’s research skills span a wide range of disciplines, from material science to electronic device engineering. His expertise in thin-film transistor design, instability analysis, and new material development has allowed him to push the envelope in semiconductor research. He is particularly skilled in analyzing the electrical performance of TFTs under various stress conditions, demonstrating an acute understanding of the intricate relationship between material properties and device functionality. Additionally, his work in flexible electronics is a testament to his ability to innovate in emerging areas.

Teaching Experience 👩‍🏫

As an Associate Professor at Shanghai Normal University, Dr. Yang has been involved in educating and mentoring the next generation of scientists and engineers. He brings his extensive research experience into the classroom, enriching students’ learning experiences. Dr. Yang’s teaching focuses on semiconductor physics, material science, and electronics. His dedication to student development is evident in his guidance of graduate students and the collaborative environment he fosters for academic exploration.

Awards and Honors 🏅

Dr. Yang’s contributions have been recognized by several prestigious national research organizations, including the National Natural Science Foundation of China. His research projects, such as the Study on the Instability of Flexible Amorphous SnSiO Thin Film Transistors, have earned him respect in the academic community and have helped elevate Shanghai Normal University‘s status in the field of electronic materials research.

Legacy and Future Contributions 🔮

Dr. Yang’s research legacy lies in his innovative contributions to oxide semiconductor technology and his dedication to finding sustainable solutions for the electronics industry. His ongoing research projects, including his work on the 345GHz Submillimeter Wave Sideband Separation Receiver for LCT Telescope, show his commitment to exploring cutting-edge technologies. Moving forward, Dr. Yang plans to continue refining indium-free tin oxide-based TFTs and explore their industrial scalability. His work has the potential to impact a variety of industries, from flexible displays to advanced sensors, shaping the future of electronic materials.

Publications Top Notes

Exploring soil-buoyancy interactions: experimental designs and educational implications for enhancing students’ scientific inquiry skills

  • Authors: Zijian Gu, Jianwen Yang
    Journal: Physics Education
    Year: 2025

Fast-response IWO/Si heterojunction photodetectors

  • Authors: Xiaochuang Dai, Jianwen Yang, Huishan Wang, Yunxi Luo, Jinying Zeng, Wangzhou Shi, Feng Liu
    Journal: Journal of Physics D: Applied Physics
    Year: 2025

Enhancement of electrical characteristics of SnGaO thin-film transistors via argon and oxygen plasma treatment

  • Authors: Yinli Lu, Xiaochuang Dai, Jianwen Yang, Ying Liu, Duo Cao, Fangting Lin, Feng Liu
    Journal: Vacuum
    Year: 2024

Preparation of chalcogenide perovskite SrHfS3 and luminescent SrHfS3:Eu2+ thin films

  • Authors: Yanbing Han, Jiao Fang, Yurun Liang, Han Gao, Jianwen Yang, Xu Chen, Yifang Yuan, Zhifeng Shi
    Journal: Applied Physics Letters
    Year: 2024

Degradation Behavior of Etch-Stopper-Layer Structured a-InGaZnO Thin-Film Transistors Under Hot-Carrier Stress and Illumination

  • Authors: Dong Lin, Wan-Ching Su, Ting-Chang Chang, Hong-Chih Chen, Yu-Fa Tu, Kuan-Ju Zhou, Yang-Hao Hung, Jianwen Yang, I-Nien Lu, Tsung-Ming Tsai et al.
    Journal: IEEE Transactions on Electron Devices
    Year: 2021

 

 

Ugur Yahsi | Experimental methods | Best Researcher Award

Prof. Ugur Yahsi | Experimental methods | Best Researcher Award

Head of the General Physics Department | Marmara University | Turkey

Prof. Dr. Uğur Yahşi is a Full Professor in the Physics Department at Marmara University, Istanbul, Turkey. With an academic background spanning Physics at institutions such as Istanbul University (BSc), University of Wisconsin (MSc), and Case Western Reserve University (PhD), he has made notable contributions to the scientific community in both research and education.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 📚

Prof. Dr. Yahşi’s academic journey began with a BSc in Physics from Istanbul University in 1983. He pursued an MSc at the University of Wisconsin from 1987-1988, followed by a PhD at Case Western Reserve University, completing his studies in 1994. His early research laid the foundation for his future work in material science and applied physics.

Professional Endeavors 💼

Prof. Yahşi’s professional career has been extensive, with a continuous academic presence at Marmara University, where he has held positions from Assistant Professor to Full Professor since 1996. Additionally, he has served as a Visiting Scientist at the University of Missouri-Kansas City and contributed significantly to various administrative roles within the university, such as Senator and Director of the Institute of Pure and Applied Sciences.

Contributions and Research Focus 🔬

Prof. Dr. Yahşi’s research is at the forefront of material science, particularly in nanomaterials, macromolecular physics, and defect structures. His research spans across multiple topics, including vacancy structures, dendrimers, polymer-ion interactions, and nanometric defects in materials. He is a leading figure in applying positron annihilation spectroscopy and other advanced techniques to study the electronic properties of materials, advancing nanotechnology and material engineering.

Impact and Influence 🌍

Prof. Yahşi’s impact extends beyond his research, as he has shaped the academic environment at Marmara University. He has mentored numerous students through undergraduate, master’s, and doctoral research projects. His leadership roles have fostered growth in the Physics Department and research programs, contributing to collaborations with other institutions and research organizations globally.

Academic Cites 📑

Prof. Dr. Yahşi has been extensively cited in scientific journals for his work on positron annihilation and material defect structures. His influence can be seen in the academic advancements in polymer science, nanotechnology, and material characterization techniques. The funding from projects such as TÜBİTAK and Marmara University underscores the significance of his work in advancing scientific discovery.

Research Skills 🔧

Prof. Yahşi possesses a diverse set of research skills, including expertise in positron annihilation spectroscopy, experimental physics, and materials characterization. He is skilled in various computational tools such as Fortran, Mathematica, and MatLab, enabling him to model complex physical systems and conduct numerical simulations in support of his theoretical work.

Teaching Experience 🎓

Prof. Yahşi’s teaching spans over decades, with experience in courses ranging from Advanced Classical Mechanics to Computer Programming in Fortran. His commitment to student development is evident through his role in shaping curriculum and teaching courses in Technical English, Solid-State Physics, and Numerical Methods. He has also contributed significantly to the translation and localization of key texts in Physics, ensuring that students have access to high-quality educational resources.

Awards and Honors 🏆

Prof. Yahşi has been the recipient of numerous fellowships and awards, such as the Turkish Educational Ministry Fellowship for his graduate studies. His work has earned research grants from prominent Turkish organizations like TÜBİTAK, demonstrating his recognized contributions to scientific progress. He continues to receive support for innovative projects, including the BİDEB Mentorship Support Program and various Marmara University projects.

Legacy and Future Contributions 🌱

Prof. Dr. Uğur Yahşi’s legacy lies in his commitment to advancing physics education and research, particularly in material science and nanotechnology. His ongoing projects, such as the investigation of flash sintering in doped ZnO structures and polymer materials, are paving the way for future breakthroughs. With continued administrative roles and research leadership, Prof. Yahşi is poised to make lasting contributions to both academic knowledge and scientific innovation.

Publications Top Notes

Free volume impact on ionic conductivity of PVdF/GO/PVP solid polymer electrolytes via positron annihilation approach

  • Authors: M. Yilmazoğlu, H. Okkay, U. Abacı, C. Tav, U. Yahşi
    Journal: Radiation Physics and Chemistry, 2025

The Influence of Defects on the Structural, Optical, and Antibacterial Properties of Cr/Cu Co-Doped ZnO Nanoparticles

  • Authors: L. Arda, Z. Ra’ad, S. Veziroğlu, C. Tav, U. Yahşi
    Journal: Journal of Molecular Structure, 2025

Correlation of proton conductivity and free volume in sulfonated polyether ether ketone electrolytes: A positron annihilation lifetime spectroscopy study

  • Authors: M. Lahmuni, M. Yilmazoğlu, U. Abacı, C. Tav, U. Yahşi
    Journal: Radiation Physics and Chemistry, 2025

A novel approach for the atomic scale characterization of Li-ion battery components probed by positron annihilation lifetime spectroscopy

  • Authors: R. Bakar, S. Koç, A. Yumak Yahşi, C. Tav, U. Yahşi
    Journal: Materials Research Bulletin, 2024

Free-volume analysis of the structural and dielectric properties of PMMA/TeO2 composites via positron annihilation lifetime spectroscopy

  • Authors: S. Kuzeci, E. Özcan, A.U. Kaya, R. Bakar, C. Tav, U. Yahşi, K. Esmer
    Journal: Journal of Alloys and Compounds, 2024

 

Sanjiv Kane | Experimental methods | Best Innovation Award

Mr. Sanjiv Kane | Experimental methods | Best Innovation Award

Scientific Officer at Raja Ramanna Centre for Advanced Technology | India

A Distinguished Scientific Officer in Applied Physics and Synchrotron Radiation

Sanjiv R. Kane is an experienced Scientific Officer with over 25 years of expertise in applied physics, particularly in synchrotron radiation and advanced instrumentation. He is currently pursuing a Ph.D. in Applied Physics at the Maharaja Sayajirao University of Baroda (2023–Present), focusing on advancing the fields of control systems, data acquisition software, and beamline technology. His proven experience spans across several prominent research facilities, including the Indus Synchrotron Facility and CERN, where he has contributed immensely to both research and technology development.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📚 Early Academic Pursuits

Sanjiv started his academic journey by earning a Bachelor of Science in Physics with minors in Mathematics and Statistics from the University of Poona (1984–1987). He further pursued his Master of Science in Applied Physics at the University of Poona (1987–1989), where he laid the foundation for his extensive career in applied physics and instrumentation design.

💼 Professional Endeavors

 Since June 1999, Sanjiv has served as a Scientific Officer at the Indus Synchrotron Facility, Raja Ramanna Centre for Advanced Technology, Indore, India, where he has worked on numerous high-profile projects. His notable contributions include the development of VME-based control systems, PLC safety interlocks, and the automation of beamline operations. His efforts in designing and deploying data acquisition systems using National Instruments LabVIEW® have been crucial in advancing the synchrotron facility’s capabilities. Additionally, he has been instrumental in designing FPGA-based DAQ systems and PXI system deployments for beamline control.

🔬 Contributions and Research Focus

Sanjiv’s research is centered on synchrotron radiation, particularly in the design and development of control systems for X-ray beamlines and instrumentation. His work on extended X-ray absorption fine structure (EXAFS), soft X-ray reflectivity, and nonlinear behavior of piezoceramic actuators has gained significant attention in the field. He has co-authored several important publications, contributing to the advancement of both material characterization and synchrotron beamline technology.

🌍 Impact and Influence

 Sanjiv’s contributions have made a significant impact on synchrotron radiation research, particularly in beamline automation and data acquisition systems. His international collaborations at CERN and Indus Synchrotron Facility have helped improve the performance of synchrotron radiation facilities, making them more efficient and accessible to researchers worldwide. His papers and conference presentations continue to influence the direction of research in synchrotron instrumentation and applied physics.

📚 Academic Cites

Sanjiv’s work has been widely cited in notable academic journals and has been presented at prestigious international conferences. His publications in journals such as Nuclear Instruments and Methods in Physics Research, Rev. Sci. Instrum., and Mechanics of Advanced Materials and Structures have contributed significantly to the development of synchrotron radiation technologies. Notable works include:

  1. “Extended X-ray Absorption Fine Structure (EXAFS) measurement of Cu metal foil using thermal wave detector: A comparative study.”
  2. “A versatile beamline for soft x-ray reflectivity, absorption, and fluorescence measurements at Indus-2 synchrotron source.”
  3. “Electric field-induced nonlinear behavior of lead zirconate titanate piezoceramic actuators in bending mode.”

🔧 Research Skills

Sanjiv’s technical expertise spans several areas including:

  • Instrumentation & Control: VME systems, PLC programming (Siemens Step 7), microcontroller-based systems (ARM, 8051).
  • Programming Languages: Proficient in LabVIEW®, C/C++, Python, Visual Basic, and VEEPRO.
  • Design & Simulation: Expertise in Altium Designer, Protel, ISE (FPGA design), NI Multisim, and Electronic Workbench.
  • Data Acquisition & Analysis: In-depth experience in developing FPGA-based DAQ systems, PXI systems, and database management using Microsoft Access.

👨‍🏫 Teaching Experience

Sanjiv has extensive experience in training and mentoring junior researchers and scientists in the areas of control systems and instrumentation for synchrotron radiation. His involvement in numerous workshops, symposia, and conferences allows him to share his expertise with others in the field.

🌱 Legacy and Future Contributions

Sanjiv’s legacy lies in his contributions to synchrotron radiation research, particularly in improving beamline automation and X-ray measurement systems. As he continues his Ph.D. journey, his future contributions will likely focus on advanced control systems and enhancements to synchrotron facilities. His ongoing work promises to make lasting improvements in the development of synchrotron instrumentation that will support the scientific community in material science, biotechnology, and physics research.

Publications Top Notes

Characterizing Pyroelectric Detectors for Quantitative Synchrotron Radiation Measurements

  • Authors: SR Kane, RW Whatmore, MN Singh, S Satapathy, PK Jha, PK Mehta
    Journal: Sensors and Actuators A: Physical
    Year: 2025

Development of Piezo-actuated X-ray Deformable Mirror for Vertical Focusing of Synchrotron Radiation at Indus-2

  • Authors: HSK Jha, AK Biswas, MK Swami, A Sagdeo, C Mukherjee, SR Kane, …
    Journal: Nuclear Instruments and Methods in Physics Research Section A: Accelerators
    Year: 2024

Green Protocol For Synthesis of Cu2O@g‐C3N4 Photocatalysts For 1, 4 Radical Oxidative Addition of Trans Crotonaldehyde Under Visible Light Condition

  • Authors: BA Maru, VJ Rao, S Kane, UK Goutam, CK Modi
    Journal: ChemPhotoChem
    Year: 2024

Development and Initial Results of X-ray Magnetic Circular Dichroism Beamline at Indus-2 Synchrotron Source

  • Authors: B Kiran, SR Garg, CK Garg, S Lal, SK Nath, R Jangir, SR Kane, …
    Journal: Proceedings of the Theme Meeting on Spectroscopy Using Indus Synchrotron
    Year: 2023

Facile Single-pot Synthesis of Fe-doped Nitrogen-rich Graphitic Carbon Nitride (Fe2O3/g-C3N4) Bifunctional Photocatalysts Derived from Urea for White LED-mediated Aldol Condensation Reaction

  • Authors: BA Maru, R Joshi, VJ Rao, SR Kane, CK Modi
    Journal: Inorganic Chemistry Communications
    Year: 2025

 

Faisal faiz | Experimental methods | Physics Industry Leadership Award

Dr. Faisal faiz | Experimental methods | Physics Industry Leadership Award

Assistant Professor at Shenzhen university | China

Dr. Faisal Faiz is a dedicated nanotechnologist and Research Fellow at the College of Electronics and Information Engineering, Shenzhen University, Guangdong, China. With a robust academic background, he holds a Ph.D. in Analytical Chemistry from Nanjing University, China. His thesis focused on the synthesis of nanomagnetic materials for speciation analysis of heavy toxic metals in environmental water. His work, especially in functionalized nanomaterials for environmental applications, has positioned him as a key contributor to the nanotechnology and environmental science fields.

👨‍🎓Profile

Google scholar

Scopus 

ORCID

Early Academic Pursuits 📚

Dr. Faiz’s academic journey began with a Bachelor’s degree in Chemistry, Physics, and Mathematics from Bahauddin Zakariya University, Pakistan, followed by a Master’s in Applied Chemistry from the University of Engineering and Technology, Lahore. His keen interest in research led him to pursue an M.Phil. in Applied Chemistry at Bahauddin Zakariya University. These foundational studies laid the groundwork for his doctoral work at Nanjing University, where he explored innovative approaches in nanomaterial synthesis and heavy metal pollutant detection.

Professional Endeavors 🧑‍🔬

Dr. Faiz has had a diverse career spanning several research institutions and teaching roles. His professional journey includes a Postdoctoral Research Scholar position at Shenzhen University, where he continues his pioneering research on nanomaterials and environmental sustainability. Prior to this, he worked as a Research Assistant at the Pakistan Institute of Nuclear Science & Technology and a Senior Lecturer at Allama Iqbal Open University. These roles have allowed Dr. Faiz to hone his research skills while contributing to environmental monitoring, sustainable technology, and energy applications.

Contributions and Research Focus 🔬

Dr. Faiz’s primary research focus is on the development of functionalized nanomaterials to address environmental challenges. His research spans three core areas:

  • Environmental Applications of Nanomaterials 🌍: He explores metal oxides and magnetic nanoparticles to create efficient sensors and advanced systems for detecting toxic gases and pollutants in air and water. His work is focused on real-time environmental monitoring, essential for ecological sustainability and public health.

  • Advanced Sensing Technologies ⚡: Dr. Faiz is advancing the development of MEMS-based gas sensors using inkjet printing technology. His efforts aim to improve the sensitivity, speed, and affordability of sensors for detecting hazardous gases at trace levels.

  • Supercapacitors for Energy and Environmental Applications 🔋: Dr. Faiz’s work on supercapacitors involves optimizing nanomaterials like metal oxides for energy storage systems that can be utilized in renewable energy storage and energy-efficient industrial devices.

Impact and Influence 🌍

Dr. Faiz’s work has made significant contributions to environmental science, nanotechnology, and sustainable energy systems. His research into nanomaterials has led to the development of new solutions for toxic pollutant detection, environmental monitoring, and energy storage technologies. With patents and research collaborations on a national level, he is helping to drive forward the global agenda on environmental sustainability.

Academic Cites 📑

Throughout his academic career, Dr. Faiz has been widely cited in scientific literature for his work on magnetic nanoparticles, environmental remediation, and nanomaterial synthesis. His contributions to toxic metal removal from water and the development of advanced sensors have made him a respected figure in the nanotechnology community. His publications continue to inspire new research in the fields of materials science and environmental engineering.

Research Skills 🛠️

Dr. Faiz possesses a diverse skill set in various experimental techniques, including:

  • Electron Microscopy (SEM, TEM)
  • X-ray Photoelectron Spectroscopy (XPS)
  • X-ray Diffraction (XRD)
  • Electrochemical Workstation Techniques
  • Atomic Absorption Spectrometry (AAS) and High-Performance Liquid Chromatography (HPLC)

These research skills enable him to conduct cutting-edge studies in nanomaterials and environmental monitoring. His ability to integrate various analytical techniques enhances the depth of his research and helps in developing innovative solutions for environmental challenges.

Teaching Experience 🏫

Dr. Faiz has an extensive teaching background, including roles as a Senior Lecturer and Science Teacher. He has taught a range of chemistry courses and has been involved in academic administration, including being a coordinator for international students and a class representative. His teaching approach blends scientific rigor with practical applications, encouraging students to engage with cutting-edge technologies and environmental solutions.

Awards and Honors 🏅

Dr. Faiz has been recognized with several awards, including:

  • Chinese Government Scholarship for his Ph.D. studies at Nanjing University.
  • Best Postgraduate Researcher award at the Institute of Chemical Sciences, Bahauddin Zakariya University.
  • Distinguished Researcher at the Pakistan Institute of Nuclear Science & Technology.

These accolades reflect his excellence in research, contribution to scientific knowledge, and commitment to environmental sustainability.

Legacy and Future Contributions 🌱

Dr. Faiz’s work promises to leave a lasting legacy in the fields of nanotechnology and environmental science. As he continues to develop functionalized nanomaterials, his research has the potential to transform industries by offering sustainable solutions for pollution detection and energy storage. Looking forward, he aims to push the boundaries of green nanomaterials, further advancing technologies for clean energy, pollution remediation, and environmental protection.

Publications Top Notes

Innovative adsorbent for sulphur dioxide: synergy of activated carbon, polyionic liquids, and chitosan

  • Authors: A. Wahab, Abdul; A. Farooq, Amjad; F. Faiz, Faisal; J. Wu, Jianghua; Y. Faiz, Yasir
    Journal: Adsorption
    Year: 2025

Tailoring MnO2 nanowire defects with K-doping for enhanced electrochemical energy storage in aqueous supercapacitors

  • Authors: J. Wu, Jianghua; F. Faiz, Faisal; M. Ahmad, Mashkoor; X. Pan, Xiaofang; Y. Faiz, Yasir
    Journal: Applied Surface Science
    Year: 2025

Removal of gaseous methyl iodide using hexamethylenetetramine and triethylenediamine impregnated activated carbon: A comparative study

  • Authors: T. Yaqoob, M. Ahmad, A. Farooq, F. Ali, Y. Faiz, A. Shah, F. Faiz, M.A. Irshad
    Journal: Diamond and Related Materials
    Year: 2023

Tuning electrocatalytic activity of Co3O4 nanosheets using CdS nanoparticles for highly sensitive non-enzymatic cholesterol biosensor

  • Authors: H. Waleed, H.U. Rasheed, A. Nisar, A. Zafar, Y. Liu, S. Karim, Y. Yu, H. Sun
    Journal: Materials Science in Semiconductor Processing
    Year: 2024

Mesoporous Co3O4@CdS nanorods as anode for high-performance lithium-ion batteries with improved lithium storage capacity and cycle life

  • Authors: H. Waleed, H.U. Rasheed, F. Faiz, A. Zafar, S. Javed, Y. Liu, S. Karim, H. Sun
    Journal: RSC Advances
    Year: 2024

 

 

Srither SR | Experimental methods | Best Researcher Award

Dr. Srither SR | Experimental methods | Best Researcher Award

Associate Professor at Koneru Lakshmaiah Education Foundation (KLEF) | India

Dr. SR. Srither is an accomplished Research Associate with a dynamic career spanning both India and abroad. With extensive expertise in Nanotechnology, his work focuses on energy harvesting, material synthesis, and nanocomposite development. He has contributed significantly to the advancement of piezoelectric and triboelectric technologies, with a primary focus on creating self-powered systems for flexible applications. His journey includes notable academic and professional roles across institutions such as the Southern University of Science and Technology (China) and Centre for Nano and Soft Matter Sciences (India).

👨‍🎓Profile

Google scholar 

Scopus

ORCID

Early Academic Pursuits 📚

Dr. Srither’s academic journey began with his B.E. in Electronics and Communication from St. Joseph’s College of Engineering, Chennai, followed by an M.Tech in Nanoscience and Technology from K.S. Rangasamy College of Technology, Coimbatore, where he graduated First Class with Distinction. His thirst for knowledge led him to pursue a Ph.D. in Nanotechnology at Anna University, Chennai. His early academic interests focused on the synthesis and characterization of nanomaterials, laying the foundation for his cutting-edge research in energy storage and conversion technologies.

Professional Endeavors 💼

Dr. Srither’s career trajectory showcases his commitment to research and teaching. He currently serves as a Visiting Professor at KL Deemed to be University, where he imparts his expertise to students in the Department of Electronics and Communication Engineering. His professional experiences extend across multiple prestigious research roles, notably as a Post-doctoral Fellow at the Quantum Information & Intelligent Energy Harvesting Lab, Southern University of Science and Technology (SUSTech), Shenzhen, China. His work continues to influence nanotechnology, energy harvesting, and energy storage devices.

Contributions and Research Focus 🔬

Dr. Srither’s research focuses on nanostructures, nanocomposites, and their applications in self-powered systems. Key contributions include the fabrication of piezo/triboelectric hybrid nanogenerators that are low-cost and flexible, designed for a wide range of IoT-enabled devices and health monitoring applications. His research also includes groundbreaking work on transparent polymers for triboelectric energy harvesting and the exploration of manganese dioxide nanoparticles for energy conversion applications.

Impact and Influence 🌍

Dr. Srither has made a lasting impact on the nanotechnology field through his innovative research and interdisciplinary projects. His work on energy harvesting has revolutionized the development of wearable devices and self-powered systems, enabling sustainable technology in fields like IoT and healthcare. His research has been recognized by notable platforms, including the Ministry of Science and Technology, Govt. of India, and has been showcased through multiple publications and patents.

Academic Cites 📑

Dr. Srither’s work has been cited extensively in high-impact journals, with his research on triboelectric nanogenerators and nanocomposite materials contributing significantly to the broader field of renewable energy and flexible electronics. He has also been a frequent presenter at international conferences and symposia, where his findings continue to inspire and influence researchers worldwide.

Research Skills 🧪

Dr. Srither possesses a diverse range of experimental skills that include spin coating, spray coating, electrospinning, and spray pyrolysis, along with advanced characterization techniques like X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-Vis spectroscopy. His expertise in electrochemical testing and device evaluation has been pivotal in the development of energy harvesting systems and energy storage devices.

Teaching Experience 🍎

Dr. Srither’s role as a Visiting Professor at KL Deemed to be University allows him to impart his knowledge to undergraduate and postgraduate students in Nanotechnology. He also has significant experience in practical teaching, having assisted professors in lab work, project development, and demonstrations in nanotechnology. His involvement in designing and executing exhibits has further enriched his teaching journey, preparing students for real-world applications of nanoscience and technology.

Awards and Honors 🏆

Dr. Srither’s dedication to excellence has been recognized through numerous accolades, including the Best Paper Award at the International Conference on Wireless Communication and Emerging Technologies (RAWCET 2022) for his work on a wearable single-electrode mode triboelectric nanogenerator. His innovations have also been featured on the DST website, with recognition from the Ministry of Science and Technology, Govt. of India.

Legacy and Future Contributions 🚀

Dr. Srither’s work sets the foundation for significant advancements in sustainable energy technologies and smart devices. His legacy lies in his ability to merge nanoscience with practical, real-world applications, particularly in energy harvesting and self-powered systems. Moving forward, his ongoing projects, such as motion sensing in sewage tunnels and structural health monitoring applications, promise to continue shaping the future of energy efficiency and smart infrastructure.

Publications Top Notes

High-Sensitivity Optical Fiber-Based SPR Sensor for Early Cancer Cell Detection Using Cerium Oxide and Tungsten Disulfide

  • Authors: N. Hma Salah, Nasih V. Yesudasu, Vasimalla B. Kaur, Baljinder S.R. Srither, S. R. Kumar, Santosh
    Journal: Plasmonics
    Year: 2025

SMF-based SPR sensors utilizing thallium bromide immobilization for detection of various bacterial cells

  • Authors: V. Yesudasu, Vasimalla N. Hma Salah, Nasih S. Chella, Santhosh S.R. Srither, S. R. Kumar, Santosh
    Journal: Microchemical Journal
    Year: 2025

Electrical and dielectric properties of PVA-doped NiGdxFe2-xO4 nanoferrite particles

  • Authors: N Lenin, NJ Raj, RR Kanna, P Karthikeyan, M Balasubramanian, …
    Journal: Materials Science and Engineering: B
    Year: 2024

Simple Non-Invasive Coronary Artery Disease Detection Using Machine Learning

  • Authors: S Kalpana, SR Srither, NR Dhineshbabu, G Nikitha
    Journal: 2024 4th International Conference on Innovative Practices in Technology and …
    Year: 2024

Recent advances in wearable textile-based triboelectric nanogenerators

  • Authors: S Neelakandan, SR Srither, NR Dhineshbabu, S Maloji, O Dahlsten, …
    Journal: Nanomaterials
    Year: 2024

Yidong Zhang | Experimental methods | Best Researcher Award

Dr. Yidong Zhang | Experimental methods | Best Researcher Award

Beijing University of Posts and Telecommunications | China

Yidong Zhang is an emerging scientist specializing in the growth of silicon-based III-V materials and their applications in the high-quality growth of GaAs heteroepitaxial layers. Holding a doctoral degree awarded at Beijing University of Posts and Telecommunications (BUPT) in 2024, he is currently a postdoctoral fellow at the same institution. His research focuses on cutting-edge quantum mechanics and material science, aiming to advance semiconductor technologies through innovative approaches in material growth.

👨‍🎓Profile

Scopus

📚 Early Academic Pursuits

Yidong Zhang’s academic journey began with a keen interest in the intersection of physics and material science, which led him to pursue advanced studies at BUPT. During his doctoral studies, Zhang delved into topics related to material fabrication and quantum mechanics, particularly focusing on heteroepitaxy and substrate preparation for GaAs growth on silicon wafers. His passion for cutting-edge research and technical innovation drove him to explore this challenging area of material science.

💼 Professional Endeavors

As a postdoctoral fellow at BUPT, Yidong Zhang is continuing his work in the field of semiconductor material growth. His professional endeavors are centered on addressing complex challenges in the heteroepitaxial growth of GaAs layers, with a particular emphasis on developing sub-nano streaky surfaces on Si (001) substrates. This innovative research has the potential to significantly improve the quality and performance of III-V semiconductor materials, which are vital for advanced electronics and optoelectronics.

🔬 Contributions and Research Focus

Zhang’s primary research focus is on the fabrication and application of high-quality GaAs heteroepitaxial layers, with an emphasis on substrate surface preparation. The work on the Si (001) substrate with sub-nano streaky surfaces is crucial as it enables better material integration and growth precision, leading to enhanced performance in semiconductor devices. His contributions in the field of silicon-based III-V material growth are poised to advance semiconductor technology, especially in areas such as high-speed electronics and optical communications.

🌍 Impact and Influence

Yidong Zhang’s research is positioned to make a significant impact in the semiconductor industry. His innovative work in substrate preparation and material growth techniques has the potential to influence high-performance electronics, solar cells, LEDs, and laser technologies. Zhang’s approach is likely to transform industry standards by offering a more cost-effective and precise method for growing high-quality semiconductor materials. His work could ultimately enable the development of next-generation devices with enhanced efficiency and performance.

📑 Academic Cites

While Yidong Zhang’s publication record is still emerging, his research has been well-received in the academic community, with growing interest in his work on Si (001) substrate preparation and GaAs heteroepitaxy. As his body of work expands, the citations of his publications are expected to increase, further cementing his position as a leading researcher in the field of material science and semiconductor technology.

🛠️ Research Skills

Dr. Yidong Zhang demonstrates a strong command of several research skills, including experimental design, material characterization, and quantum mechanical simulations. His expertise in substrate preparation techniques, coupled with his knowledge of semiconductor growth processes, equips him with the necessary tools to tackle complex challenges in the field of heteroepitaxy. He has a high level of proficiency in nano-scale fabrication and materials analysis, making him a valuable asset in any research team focused on advanced material science.

👨‍🏫 Teaching Experience

As a postdoctoral fellow, Zhang has had opportunities to mentor graduate students and research assistants at BUPT. His role involves guiding students through complex experimental setups, helping them develop critical research skills, and encouraging a hands-on approach to material science. His commitment to education and knowledge sharing ensures the continued growth of the next generation of researchers in quantum mechanics and material fabrication.

🏅 Awards and Honors

Yidong Zhang’s early academic career has already been marked by several academic achievements, including the award of a Doctoral degree in 2024. While he is at the beginning of his postdoctoral journey, Zhang is a strong contender for recognition in the research community, particularly through awards like the Best Researcher Award. His work is likely to attract further accolades as it continues to push the boundaries of material science and semiconductor technology.

🌱 Legacy and Future Contributions

As Yidong Zhang progresses in his career, his legacy in the field of semiconductor research will likely be defined by his contributions to high-quality material growth techniques and the advancement of silicon-based III-V heteroepitaxy. His future contributions could lead to game-changing advancements in electronics and optoelectronics, as his work has the potential to revolutionize semiconductor integration. Looking ahead, Zhang’s research will continue to influence both academia and industry, laying the groundwork for next-generation technologies.

Publications Top Notes

The Si (001) substrate with sub-nano streaky surface: Preparation and its application to high-quality growth of GaAs heteroepitaxial-layer

  • Authors: Yidong Zhang, Jian Li, Xiaomin Ren, Chuanchuan Li, Xin Wei
    Journal: Applied Surface Science
    Year: 2024

InAs/GaAs quantum-dot lasers grown on on-axis Si (001) without dislocation filter layers

  • Authors: Yongli Wang, Bojie Ma, Jian Li, Xin Wei
    Journal: Optics Express
    Year: January 2023

Rapid and facile characterization of dislocations in cross-sectional GaAs/Si films using electron channeling contrast imaging

  • Authors: Chen Jiang, Hao Liu, Jian Li, Qi Wang
    Journal: Conference Paper
    Year: January 2023

Demonstration of room-temperature continuous-wave operation of InGaAs/AlGaAs quantum well lasers directly grown on on-axis silicon (001)

  • Authors: Chen Jiang, Hao Liu, Jun Wang, Yongqing Huang
    Journal: Applied Physics Letters
    Year: August 2022

 

 

Yue Song | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Yue Song | Experimental methods | Best Researcher Award

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences | China

Dr. Song Yue is an Associate Researcher at the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, specializing in high-power semiconductor lasers and the failure mechanisms of these lasers. With a PhD from the University of Chinese Academy of Sciences, she has made significant contributions to the field, including proposing new models on defect evolution and indium atom migration in semiconductor materials.

👨‍🎓Profile

Scopus

Early Academic Pursuits 📚

Dr. Song completed her PhD at the University of Chinese Academy of Sciences, where she gained deep knowledge in semiconductor lasers and the mechanisms affecting their efficiency and longevity. Her academic path was characterized by an early focus on understanding the complex behaviors of semiconductor materials under various operational conditions. Her research foundation laid the groundwork for her future innovations.

Professional Endeavors 💼

Dr. Song is an Associate Researcher at the Changchun Institute of Optics, Fine Mechanics and Physics. In this role, she has led numerous research projects, most notably focusing on high-power semiconductor lasers. She has been an integral part of key national research initiatives, including projects funded by the National Natural Science Foundation of China and the National Key Research and Development Program of China. These efforts have not only advanced her field but also brought significant funding and resources into her research domain.

Contributions and Research Focus 🔬

Dr. Song’s research is primarily focused on the development and efficiency enhancement of semiconductor lasers. Her contributions include the thermal defect evolution models for quantum wells in AlGaInAs and introducing a strained compensation layer in superlattice structures. These innovations are aimed at improving the performance and reliability of gain chips, which are central to high-power laser technology. She also proposed a novel approach to understanding indium atom migration in semiconductor materials using the dark state model, shedding light on failure mechanisms that affect the lifespan and stability of these lasers.

Impact and Influence 🌍

Dr. Song’s research has had a profound impact on the semiconductor laser industry, particularly by improving the efficiency and reliability of gain chips. Her findings are widely cited, and her work on thermal effects and indium atom migration has set new standards in the industry. Additionally, her involvement in developing group standards for the China Association of Automobile Manufacturers has led to practical applications of her research in the automotive sector.

Academic Cites 📑

Dr. Song has authored over 30 academic papers, including 14 SCI core papers as the first or corresponding author. Her work is frequently cited in the scientific community, particularly in the domains of semiconductor lasers and optical materials. She has also coauthored a monograph, expanding the breadth of her influence in the academic world.

Research Skills 🔧

Dr. Song is skilled in the theoretical modeling of semiconductor materials and laser systems. Her ability to develop defect models, atom migration theories, and structure enhancements demonstrates her expertise in both computational and experimental research. Her work is deeply rooted in quantum mechanics, material science, and optical engineering, making her a well-rounded researcher in the field.

Awards and Honors 🏅

Dr. Song has received multiple accolades recognizing her contributions, including:

  • High-level D Talents of Jilin Province
  • Dawn Talent title
  • Membership in the Changbai Mountain Leading Team
  • Changchun Institute of Optics Excellent Achievement Award
  • Institute’s Special Youth Reward Plan C-level award
  • Institute’s Innovation Practice Project Special Award
  • Recognition in the Wiley China Excellent Author Program

These honors reflect her outstanding contributions to both her field of research and the broader scientific community.

Legacy and Future Contributions 🌟

Dr. Song is poised to continue making groundbreaking contributions to semiconductor laser technology. Her work already impacts both academic research and industry applications, particularly in fields requiring high-efficiency lasers such as telecommunications, automotive technologies, and defense systems. As her research evolves, she is likely to contribute to advancements in quantum computing and photonic devices, leaving a lasting legacy in the world of optics and laser technology.

Publications Top Notes

High-power and ultra-wide-tunable fiber-type external-cavity diode lasers

  • Authors: Q. Cui, Y. Lei, C. Yang, L. Qin, L. Wang
    Journal: Optics and Laser Technology
    Year: 2025

Integrated Light Sources Based on Micro-Ring Resonators for Chip-Based LiDAR

  • Authors: L. Huang, C. Yang, L. Liang, Y. Ding, L. Wang
    Journal: Laser and Photonics Reviews
    Year: 2025

Recent Advances in Tunable External Cavity Diode Lasers

  • Authors: Y. Wang, Y. Song
    Journal: Applied Sciences (Switzerland)
    Year: 2025

Noise characteristics of semiconductor lasers with narrow linewidth

  • Authors: H. Wang, Y. Lei, Q. Cui, L. Qin, L. Wang
    Journal: Heliyon
    Year: 2024

Suparna Kar Chowdhury | Experimental methods | Women Researcher Award

Prof. Suparna Kar Chowdhury | Experimental methods | Women Researcher Award

Jadavpur University | India

Dr. Suparna Kar Chowdhury is a distinguished Professor in the Electrical Engineering Department at Jadavpur University, Kolkata, India. With a career spanning over three decades, she has earned recognition for her deep expertise in machine analysis and design. As a senior IEEE member and an active volunteer, Dr. Chowdhury is a leading figure in both academic and professional circles in Electrical Engineering.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Chowdhury’s journey in Electrical Engineering began when she graduated in 1987 from Jadavpur University, Kolkata. She continued to excel academically, earning her M.Tech degree in Electrical Engineering from the prestigious Indian Institute of Technology (IIT), Kharagpur, in 1989. Her commitment to learning and her strong academic foundation led her to pursue a Ph.D. in Electrical Engineering from Jadavpur University in 2000, where she expanded her knowledge in advanced topics within the field.

Professional Endeavors 💼

After her graduation, Dr. Chowdhury briefly worked as an engineer at M/S M N Dastur & Co., gaining practical industry experience. In 1990, she began her academic career as an Assistant Professor at Jadavpur University and quickly gained recognition for her contributions to the academic community. Over the years, she has climbed the ranks, ultimately achieving the position of Professor in the Electrical Engineering Department, where she continues to inspire future engineers.

Contributions and Research Focus 🔬

Dr. Chowdhury’s research focus lies in machine analysis and design. She has made significant contributions to the advancement of these fields, publishing around 40 papers in National and International conferences and journals. Her research is aimed at improving the design and efficiency of electrical machines, and she has played a key role in shaping the landscape of machine engineering through her innovative studies.

Impact and Influence 🌍

As a senior member of IEEE (USA) and a leader in the IEEE Kolkata Section, Dr. Chowdhury has had a substantial impact on the global engineering community. Her leadership roles, including serving as section secretary, treasurer, and chair of the Power & Energy chapter, have allowed her to influence the growth and development of the IEEE Kolkata Section. Through these leadership positions, Dr. Chowdhury has contributed to expanding the reach of IEEE’s initiatives in India and globally.

Academic Cites 📑

With a vast publication record and extensive involvement in academic circles, Dr. Chowdhury has contributed to numerous research endeavors, producing impactful work that has shaped the current understanding of machine design and analysis. Her publications have garnered attention within the academic community, and her research insights continue to influence future studies in the field.

Research Skills 🔧

Dr. Chowdhury’s research skills encompass advanced machine design, electrical system modeling, and optimization techniques. She has worked on complex analytical methods to solve engineering challenges, contributing to her reputation as an expert in the field of electrical machine analysis. Her ability to bridge theoretical knowledge with practical application has made her research highly valuable to both academia and industry.

Teaching Experience 🏫

As an Assistant Professor and later as a Professor, Dr. Chowdhury has been an influential educator, guiding students in the Electrical Engineering Department at Jadavpur University. With over three decades of teaching experience, she has mentored numerous students and has successfully supervised five Ph.D. theses and sixteen M.E. theses. Her commitment to education and student development remains a key part of her legacy.

Awards and Honors 🏅

Dr. Chowdhury has received multiple accolades for her academic and professional contributions. Notably, her status as a senior member of IEEE and her leadership roles within the IEEE Kolkata Section underscore her commitment to advancing electrical engineering. These honors reflect her dedication and passion for the field, as well as her ability to inspire others.

Legacy and Future Contributions 🌱

Dr. Suparna Kar Chowdhury’s legacy lies in her remarkable impact on machine analysis and design in Electrical Engineering, as well as her leadership within the IEEE community. She has left a lasting mark on both her students and colleagues through her innovative research, mentorship, and service. Looking forward, Dr. Chowdhury is expected to continue advancing research in machine analysis, contributing to sustainable technologies, and inspiring the next generation of engineers. Her continued commitment to academia and research excellence will undoubtedly shape the future of Electrical Engineering.

Publications Top Notes

  • Estimation of Induction Motor Equivalent Circuit Parameters and Losses from Transient Measurement
    Authors: Diptarshi Bhowmick, Suparna Kar Chowdhury
    Year: Dec 2024

  • A New Nonisolated Bidirectional DC-DC Converter with High Voltage Conversion Ratio
    Authors: Supratik Sikder, Debashis Chatterjee, Suparna Kar Chowdhury
    Year: Dec 2023

  • Performance analysis of different rotor configuration of LSPMSM for Electric Vehicles
    Authors: Mousumi Jana Bala, Chandan Jana, Suparna Kar Chowdhury, Nirmal Kumar Deb
    Year: Dec 2022

  • Sensor Less Performance Estimation of Induction Motor
    Authors: Diptarshi Bhowmick, Suparna Kar Chowdhury
    Year: Dec 2022

  • Performance and Temperature Estimation of Induction Motor from Transient Measurement
    Authors: Diptarshi Bhowmick, Suparna Kar Chowdhury
    Year: Dec 2020