Kriti Ranjan Sahu | Experimental methods | Best Researcher Award

Assist. Prof. Dr. Kriti Ranjan Sahu | Experimental methods | Best Researcher Award

Dr. Kriti Ranjan Sahu is a distinguished physicist and academic leader, currently serving as the Head of the Department of Physics and Assistant Professor at Bhatter College, Dantan (Autonomous) in Paschim Medinipur, West Bengal, India. With a strong background in material science, applied physics, and experimental techniques, Dr. Sahu has made pioneering contributions across multiple fields of science including piezoelectric materials, superconductivity, and optical technologies.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📘 Early Academic Pursuits

Dr. Sahu’s academic journey began in Tickrapara Ambikyamoye High School, culminating in his B.Sc in Physics from P.K. College, Contai under Vidyasagar University in 2002. He pursued his M.Sc in Physics from G.G.D. University, Bilaspur, securing a strong academic footing with 64.39% marks in 2004. He earned his PhD in 2016 from Jadavpur University, working under Prof. Dr. Udayan De (Retd. Senior Scientist at VECC, Kolkata) with a thesis focused on “Study of Some Piezoelectric and Other Oxides and of Their Polymeric Composites for Applications“.

🧑‍🏫 Professional Endeavors

Dr. Sahu began his teaching career as a Lecturer and HoD in Egra S.S.B. College in 2005, later transitioning to Bhatter College in 2019 as a full-time Assistant Professor and Department Head. With over 19 years of academic service, he is a veteran educator deeply committed to student-centric scientific inquiry and interdisciplinary learning.

🧪 Contributions and Research Focus

Dr. Sahu has spearheaded numerous innovative research projects and groundbreaking discoveries. He developed a novel and safe technique for preparing orthorhombic PbNb₂O₆ piezoelectric material in 2014, widely used in nuclear imaging sensors. In 2020, he reported a surprising ~8°C enhancement in the superconducting transition temperature of Fe-based superconductors due to Ar⁶⁺ ion beam irradiation. In 2022, he invented a new laser-based experimental method for measuring refractive indices in solid materials, suitable for undergraduate laboratories. He also discovered a new natural cellulosic fiber from Cyperus compactus (2023), and synthesized high-quality Na₂O–ZnO–TeO₂ glasses for optical communication (2020–2023).

🌐 Impact and Influence

Dr. Sahu’s work has gained national and international recognition. His cutting-edge research has been published in top-tier journals like Physica C, Carbohydrate Polymer Technologies, Glass Physics and Chemistry, and Journal of Physics and Chemistry of Solids. His findings in superconductivity and piezoelectric materials have laid foundational work for future advancements in sensor technology, nuclear applications, and sustainable electronics.

📚 Academic Cites and Publications

Dr. Sahu has made extensive contributions to peer-reviewed literature with numerous publications across Q1 to Q4 journals. Notably, he reported a remarkable 50% increase in superconducting critical temperature (Tc) due to ion implantation, published in Physica C (2025). His work on the characterization of a new natural cellulosic fiber appeared in Carbohydrate Polymer Technologies (2023). He also introduced a laser-based refractive index measurement technique featured in The Physics Teacher (2022). Additionally, Dr. Sahu has co-authored several papers on glass materials, organic solar cells, and the effects of ion irradiation, showcasing his broad research expertise.

🧠 Research Skills

Dr. Sahu possesses a wide range of research skills encompassing material synthesis, including piezoelectrics, superconductors, EMI shielding composites, and glass materials. He is proficient in advanced characterization techniques such as XRD, UV-Vis spectroscopy, SEM, TEM, FTIR, DSC, DTA, TGA, impedance analysis, and vector network analysis (VNA). His expertise also extends to device fabrication, particularly in creating organic solar cells. Additionally, Dr. Sahu has conducted numerous irradiation experiments using gamma rays and ion beams at renowned facilities like UGC-DAE, IUAC, and SAMEER, reflecting his strong interdisciplinary research capabilities.

👨‍🏫 Teaching Experience

Dr. Sahu has nearly two decades of teaching experience. He has been instrumental in integrating innovative lab experiments, interdisciplinary research modules, and undergraduate research projects into college curricula. His initiative, BASIS (Bengal Academic Society for Interactive Sciences), has helped UG/PG students showcase poster-based research across colleges.

🏆 Awards and Honors

  • 🥇 International Research Award (2020) by RULA and World Research Council for outstanding work on piezoelectric spectroscopy.

  • 📜 Certificate of Publication from Thermochimica Acta for significant findings on Nb₂O₅ phase in PbNb₂O₆ formation.

  • 🧾 Life Member of Indian Association of Physics Teachers (IAPT).

📝 Editorial Roles and Peer Review

  • Associate Editor: Bhatter College Journal of Multidisciplinary Studies, since 2023.

  • Editorial Member: International Journal of Materials Science and Applications (USA).

  • Reviewer: International Journal of Energy Research, Material Science Research India.

🔬 Legacy and Future Contributions

Dr. Kriti Ranjan Sahu continues to inspire scientific curiosity through poster-based symposiums, interactive webinars, and hands-on experimental training under the umbrella of BASIS. His commitment to low-cost science education, research democratization, and young investigator mentorship ensures a lasting impact on the next generation of physicists and applied researchers. Looking ahead, Dr. Sahu aims to bridge research with industry, focusing on green technologies, high-Tc superconductors, and materials for next-gen optics and electronics.

Top Noted Publications

Superconducting Single Crystals Show About 50% Increase of the Superconducting Critical Temperature after Ar Ion Implantation

  • Authors: Sahu, K.R.; Wolf, T.; Mishra, A.K.; Chakraborty, K.R.; Banerjee, A.; Ganesan, V.; De, U.
    Journal: SSRN (Other)
    Year: 2025

Characterization of new natural cellulosic fibers from Cyperus compactus Retz. (Cyperaceae) Plant

  • Authors: Bhunia, A.K.; Mondal, D.; Sahu, K.R.; Mondal, A.K.
    Journal: Carbohydrate Polymer Technologies and Applications
    Year: 2023

Enhancement of Optical and Electrical Properties of Pr³⁺ Doped Na₂O–ZnO–TeO₂ Glass Materials

  • Authors: Mirdda, J.N.; Mukhopadhyay, S.; Sahu, K.R.; Goswami, M.N.
    Journal: Glass Physics and Chemistry
    Year: 2023

Modification of Optical Bandgap and Formation of Carbonaceous Clusters Due to 1.75 MeV N⁵⁺ Ion Irradiation in PET Polymers and Search for Chemical Reaction Mechanisms

  • Authors: Prasad, S.G.; Lal, C.; Sahu, K.R.; De, U.
    Journal: Biointerface Research in Applied Chemistry
    Year: 2023

Ultrastructural and Spectroscopic Analysis of Lignin of Stone Cells in Mimusops elengi L. (Sapotaceae) Fruit Mesocarp

  • Authors: Khatun, M.; Sahu, K.R.; Mondal, A.K.
    Journal: Biointerface Research in Applied Chemistry
    Year: 2023

 

 

Marcin Szczęch | Experimental methods | Excellence in Innovation

Assoc. Prof. Dr. Marcin Szczęch | Experimental methods | Excellence in Innovation

AGH University of Krakow | Poland

Marcin Szczęch is a professor at the AGH University of Krakow in Poland, specializing in the study of magnetic fluids (both magnetorheological and ferrofluid) and their applications, particularly in sealing technology. With an academic career dedicated to exploring fluid dynamics and material science, Szczęch’s work has influenced several engineering fields, contributing both to theoretical studies and practical solutions. His groundbreaking contributions, particularly in magnetic fluid sealing, have earned him a reputation as a leading researcher in his field.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Marcin Szczęch’s academic journey began at the AGH University of Krakow, where he earned both his Bachelor’s and Ph.D. in Mechanical Engineering. His Ph.D. thesis focused on the durability of rotary ferrofluid seals in water environments, setting the foundation for his expertise in magnetic fluid applications. After earning his Doctor of Philosophy in 2014, he further advanced his research by exploring the continuity behavior of liquid rings formed by magnetic liquids, which earned him a post-doctoral degree in 2021.

Professional Endeavors 💼

Since 2011, Szczęch has been a faculty member at the AGH University of Krakow, currently holding the position of Professor at the Faculty of Mechanical Engineering and Robotics. In this role, he has not only continued to drive forward his research on magnetic fluids but also contributed significantly to the academic environment by mentoring over 40 students and supervising doctoral research projects. His main research areas focus on magnetorheological and ferrofluids and their use in various industrial applications, especially for fluid seals, vibration isolators, and lubrication systems.

Contributions and Research Focus 🔬

Marcin Szczęch’s research is primarily focused on magnetic fluids and their practical applications. His work has explored the use of these fluids in various contexts, such as magnetic fluid sealing systems, lubrication systems, and vibration isolators. Some of his most notable projects include the development of the Compact Magnetic Fluid Seal (CMFS) and research into biocompatible coatings for medical applications. He has also worked extensively on magnetic fluid lubricated bearings, contributing to the understanding of how these materials operate under magnetic field conditions.

Impact and Influence 🌍

Marcin Szczęch has made a significant impact in both academia and industry. His published research in prominent journals and his extensive patent portfolio (24 patents granted by the Polish Patent Office) underscores his ability to not only advance the scientific understanding of magnetic fluids but also provide practical solutions for industries such as machine design, materials science, and bioengineering. His multidisciplinary research continues to push the boundaries of engineering, positioning him as a key influencer in the development of innovative fluid dynamics solutions.

Academic Cites and Scholarly Recognition 📚

Szczęch’s scholarly work has earned him a strong reputation, as evidenced by his 52 publications on the AGH BaDAP list and 23 indexed in the Web of Science database. With an H-index of 9, Szczęch’s work has been cited numerous times, indicating its relevance and importance in the academic community. His contributions to magnetic fluid dynamics have gained recognition in a wide array of engineering disciplines, cementing his status as a thought leader in the field.

Research Skills and Expertise ⚙️

Szczęch is proficient in a variety of engineering programs such as SolidWorks, AutoCAD, Matlab, Mathcad, Ansys, and LabVIEW, and is well-versed in operating specialized research equipment like rotational rheometers, particle distribution analyzers, and 3D scanners. His expertise in magnetic fluids, coupled with his command of these advanced tools, allows him to carry out both theoretical and experimental studies that bridge the gap between research and industrial application.

Teaching Experience 📖

As a professor, Szczęch teaches a wide range of courses, including Fundamentals of Machine Construction, Machine Design, Modern Engineering Materials, and Computer-Aided Design. His teaching has positively impacted numerous students, with more than 40 thesis works realized under his supervision. He plays an active role in shaping the next generation of engineers and researchers, fostering a deep understanding of both fundamental principles and practical applications of magnetic fluid technologies.

Awards and Honors 🏆

Marcin Szczęch’s work has been recognized through various grants, patents, and research projects. He has received numerous accolades for his contributions to engineering, particularly in the areas of magnetic fluid sealing systems and lubrication technologies. His 24 patents and participation in several innovative research projects underscore his commitment to pushing the envelope of applied research. Additionally, he has been recognized for his role in supervising and mentoring students, further establishing his credibility as an academic leader.

Legacy and Future Contributions 🌱

Marcin Szczęch’s legacy is shaped by his contributions to magnetic fluid technology, especially in the development of advanced seals, lubricants, and vibration isolators. Looking forward, Szczęch is poised to expand his research into sustainable and eco-friendly applications of magnetic fluids, particularly in the context of green engineering and biotechnology. His future contributions could bridge the gap between advanced materials and sustainability, aligning his work with the growing global focus on environmentally conscious engineering solutions.

Publications Top Notes

Research into the pressure capability and friction torque of a rotary lip seal lubricated by ferrofluid

  • Authors: Marcin Szczęch
    Journal: Journal of Magnetism and Magnetic Materials
    Year: 2025

Analysis of a new type of electric power steering gear with two pinions engaged on the same set of teeth on the rack

  • Authors: Marcin Szczęch, Marcin Nakielski, Jaroslaw Bujak
    Journal: Tribologia: teoria i praktyka
    Year: 2024

Comparative study of models and a new model of ferrofluid viscosity under magnetic fields and various temperatures

  • Authors: Marcin Szczęch, Tarasevych Yuliia
    Journal: Tribologia: teoria i praktyka
    Year: 2024

Research into the properties of magnetic fluids produced by milling technology

  • Authors: Wojciech Horak, Marcin Szczęch
    Journal: Tribologia: teoria i praktyka
    Year: 2024

The influence of printing parameters on leakage and strength of fused deposition modelling 3D printed parts

  • Authors: Marcin Szczęch, Wojciech Sikora
    Journal: Advances in Science and Technology Research Journal
    Year: 2024