Prashant Thakur | Experimental methods | Best Researcher Award

Assist. Prof. Dr. Prashant Thakur | Experimental methods | Best Researcher Award

Assistant Professor at Career Point University, Hamirpur | India

Dr. Prashant Thakur is an Assistant Professor in the Department of Physics and the Nodal Officer at the Center for Green Energy Research (CGER) at Career Point University, Hamirpur, Himachal Pradesh, India. He is ranked among the Top 0.5% of Researchers Worldwide (2024) by ScholarGPS®, California, US. His expertise lies in Materials Physics, particularly in superparamagnetic lanthanide-doped Mn-Zn ferrite nanoparticles. He has published 22 research articles and holds a patent titled “Superparamagnetic Nanoparticles and Method for Preparation Thereof”. Dr. Thakur has actively contributed to the development of environmentally sustainable technologies in the fields of nanomaterials and green energy.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓Education

Dr. Thakur earned his Ph.D. in Materials Physics from Jaypee University of Information Technology, Solan in 2019. He also holds a B.Ed. in Teaching Science and Maths from HP University, Shimla (2014), an M.Sc. in Materials Physics from Shoolini University, Solan (2013), and a B.Sc. in Non-Medical from HP University, Shimla (2011). His education laid a strong foundation in physics and material sciences, preparing him for groundbreaking research in nanomaterials, magnetism, and energy solutions.

🏢Professional Experience

Dr. Thakur is currently serving as an Assistant Professor at Career Point University, Hamirpur. He previously worked as an Assistant Professor in the Department of Physics at Akal College of Basic Sciences, Eternal University (Feb 2019 – Feb 2021). He has also been a Teaching Assistant in the Department of Physics and Materials Science at Jaypee University of Information Technology, Solan, from Aug 2014 – Nov 2018. His academic roles have involved teaching materials physics and guiding research in nanomaterials, particularly superparamagnetic nanoparticles and magnetic ferrites.

🏆Awards and Honors

Dr. Thakur has been ranked among the Top 0.5% of Researchers Worldwide (2024) by ScholarGPS®, USA, a prestigious recognition. He has also received the Best Poster Presentation Award at a National Conference at Shoolini University (2013). Additionally, he has been honored as a Resource Person at the e-workshop on “Materials and their Characterization” at Maharaja Agrasen University, H.P. in 2021. Dr. Thakur’s work has earned him multiple accolades and has significantly contributed to the scientific community.

🧠Research Focus

Dr. Prashant Thakur’s research focuses on the synthesis and characterization of nanomaterials for applications in magnetic materials, environmental remediation, and energy storage. His key interests include superparamagnetic lanthanide-doped Mn-Zn ferrites and their potential in magnetic and electromagnetic applications. His work on bismuth-doped barium hexaferrites and green-synthesized nanoparticles for antimicrobial and photocatalytic applications demonstrates his dedication to sustainable technology. Dr. Thakur is also engaged in exploring green energy solutions to contribute to a cleaner environment.

🔬Research Skills

Dr. Thakur possesses a diverse set of research skills in nanomaterials synthesis, X-ray diffraction, magnetic characterization, and optical properties analysis. He is highly skilled in microwave sintering, sol-gel processes, and citrate sol-gel methods for the development of ferrites and nanoparticles. His expertise in structural and morphological analysis using tools like SEM, TEM, and XPS further enhances his ability to investigate the properties of advanced materials. He also possesses deep experience in electromagnetic shielding, photocatalysis, and environmental applications of nanomaterials, contributing significantly to sustainable material science.

Publications Top Notes

Efficient removal of toxic dyes from water using Mn3O4 nanoparticles: Synthesis, characterization, and adsorption mechanisms

  • Authors: Kamal Kishore, Jaswinder Kaur, Yasser B. Saddeek, Meenakshi Sharma, Manpreet Singh, Prashant Thakur, Dr. Yogesh Kumar Walia, Madan Lal, R. Suman, A.S. Reddy, et al.
    Journal: Journal of Molecular Structure
    Year: 2025

Green synthesized Fe‐doped ZnO NPs using aloe vera gel: Antimicrobial, structural, optical and magnetic properties

  • Authors: Shreya Chauhan, Prashant Thakur, Kamal Kishore, Madan Lal, Pankaj Sharma
    Journal: Journal of the American Ceramic Society
    Year: 2025

Optimized electromagnetic shielding properties using bismuth-doped barium hexaferrite nanoparticles

  • Authors: Neha Thakur, Indu Sharma, Prashant Thakur, Khalid Mujasam Batoo, Sagar E. Shirsath, Gagan Kumar
    Journal: Polyhedron
    Year: 2025

Enhanced photocatalytic and antimicrobial properties of nickel-doped barium M-type hexaferrites synthesized via citrate sol-gel method

  • Authors: Indu Sharma, Neha Thakur, Yasser A.M. Ismail, K.A. Aly, Pankaj Sharma, K.M. Batoo, Prashant Thakur
    Journal: Inorganic Chemistry Communications
    Year: 2024

Improved magneto-dielectric response and dielectric characteristics of rare earth doped Ba and Co based U-type hexaferrite

  • Authors: Indu Sharma, Sunil Sharma, Prashant Thakur, Sumit Bhardwaj, Munisha Mahajan, Shubhpreet Kaur, Gagan Anand, Rohit Jasrotia, A Dahshan, H.I. Elsaeedy, Pankaj Sharma, Gagan Kumar
    Journal: Materials Chemistry and Physics
    Year: 2024

Olfa Turki | Experimental methods | Best Researcher Award

Assist. Prof. Dr. Olfa Turki | Experimental methods | Best Researcher Award

Faculty of Sciences , Tunisia

Olfa Turki is an accomplished Assistant Professor at FST with a deep expertise in Physics, particularly in materials science and piezoelectric nanocomposites. With a PhD in Physics and a Master’s in Condensed Matter Physics, Olfa has built a robust academic career. She has contributed extensively to the development of lead-free ceramics and nanocomposites for sensor technologies. Olfa is also an active participant in international research projects and has presented her findings at numerous conferences worldwide. Beyond academics, she is committed to societal development, having been a candidate in municipal elections in Sfax in 2022. Her research bridges the gap between theoretical studies and practical applications in energy storage and sensors.

👨‍🎓Profile

Scopus

ORCID

🎓Education 

Olfa Turki holds a PhD in Physics from 2017, focusing on materials science, specifically piezoelectric nanocomposites. She completed her Master’s Degree in Condensed Matter Physics in 2013, which provided her with a strong foundation in solid-state physics. Her academic journey began with a Bachelor’s Degree in Physics in 2011, where she gained the knowledge that underpins her later research. Olfa’s educational background is complemented by her Baccalaureate in Mathematics from 2008, which further sharpened her analytical and problem-solving skills. Throughout her studies, Olfa has demonstrated a passion for scientific inquiry and a commitment to advancing knowledge in materials physics. Her academic qualifications are paired with hands-on experience in various scientific programs like Origin and Fullprof, enhancing her ability to analyze and present research data effectively. Olfa’s education continues to shape her innovative approach to solving complex scientific problems.

🏢Professional Experience 

Olfa Turki has accumulated a wealth of experience in teaching and research. She currently serves as an Assistant Professor at the Faculty of Sciences of Tunis (FST), where she teaches physics and conducts cutting-edge research. Olfa has also held contractual assistant positions at various institutions, including the Institute of Physics and Engineering (IPEIS) and the Institute of Information and Communication Technologies (ISGI), from 2015 to 2023. In these roles, she gained extensive experience in curriculum development, lecturing, and mentoring students. Olfa’s practical involvement in research is equally impressive, with significant contributions to projects on sensor autonomy and nanocomposite development. She has worked on national and international projects, collaborating with leading scientists in the field. Olfa has presented her work at various prestigious scientific conferences, both orally and in posters, solidifying her position as a respected researcher in her field.

🏆Awards and Honors

Olfa Turki has been recognized for her outstanding contributions to the field of material science and physics. While no formal awards are mentioned, her significant achievements in research, publications, and conference participation place her in high regard within the scientific community. Her work on piezoelectric nanocomposites and their application in sensor technologies has garnered attention, as evidenced by her numerous publications in high-impact journals such as Applied Surface Science and Ceramics International. In addition, Olfa’s involvement in international research programs like the AUF Research Support Program further highlights her scientific stature. Olfa’s role in municipal elections demonstrates her recognition as a leader in both academia and community involvement. Her ability to balance these responsibilities while maintaining a high standard of academic and research excellence showcases her dedication, which is often celebrated by her peers and colleagues.

🌍Research Focus 

Olfa Turki’s research focuses primarily on the development of lead-free ceramics and piezoelectric nanocomposites. Her work aims to improve the dielectric, ferroelectric, and electrocaloric properties of these materials, making them ideal candidates for use in sensor technologies, energy storage, and nanogenerators. Olfa has conducted in-depth studies on the effects of doping and substitution of various elements, such as lanthanides, to enhance the functional properties of ferroelectric ceramics. Her research has a direct application in creating more sustainable and efficient materials, particularly in the realm of green technologies. Moreover, Olfa explores the structural properties and microstructure of nanocomposites, offering innovative approaches for material synthesis and processing. Her recent international collaboration, NAPES, explores the development of nanocomposites for pressure sensors and energy harvesting, positioning her research at the intersection of advanced material science and applied technologies.

🧠Research Skills

Olfa Turki possesses a strong set of research skills that complement her work in materials science. She is proficient in using scientific programs such as Origin and Fullprof, tools that allow her to analyze complex data and model materials’ behavior. Olfa’s expertise in synthesis techniques, particularly sol-gel hydrothermal synthesis, enables her to create high-performance materials like piezoelectric nanocomposites and lead-free ceramics. Her ability to analyze and interpret dielectric, ferroelectric, and piezoelectric properties is a cornerstone of her research. Olfa is also adept in presenting her findings through oral and poster presentations at conferences, enhancing her scientific communication skills. Furthermore, she collaborates well within interdisciplinary teams and takes an active role in mentoring students, promoting research development. Her work is continually evolving, supported by her ability to stay updated on the latest scientific advancements and her commitment to collaborative research across international platforms.

Publications Top Notes

Sol-gel hydrothermal synthesis of lead-free BT nanoparticles for enhanced dielectric properties in PVDF nanocomposites

  • Authors: O. Turki, A. Slimani, S. Boufid, L. Seveyrat, V. Perrin, R. Ben Hassen, H. Khemakhem
    Journal: Applied Surface Science
    Year: 2025

Electrical, ferroelectric and electro-caloric properties of lead-free Ba₀.₈₅Ca₀.₁₅Ti₀.₉₅(Nb₀.₅Yb₀.₅)₀.₀₅O₃ multifunctional ceramic

  • Authors: I. Zouari, A. Dahri, O. Turki, V. Perrin, L. Seveyrat, Z. Sassi, N. Abdelmoula, H. Khemakhem, W. Dimassi
    Journal: Ceramics International
    Year: 2024

The effect of Erbium on physical properties of the BaCaTi(NbYb)O multifunctional ceramic

  • Authors: I. Zouari, O. Turki, L. Seveyrat, Z. Sassi, N. Abdelmoula, H. Khemakhem
    Journal: Applied Physics A
    Year: 2023

Ferroelectric Properties and Electrocaloric Effect in Dy₂O₃ Substitution on Lead‑Free NBT-6BT Ceramic

  • Authors: O. Turki, A. Slimani, I. Zouari, L. Seveyrat, Z. Sassi, H. Khemakhem
    Journal: Journal of Electronic Materials
    Year: 2022

Improved dielectric, ferroelectric, and electrocaloric properties by Yttrium substitution in NBT-6BT based ceramics

  • Authors: O. Turki, F. Benabdallah, L. Seveyrat, Z. Sassi, V. Perrin, H. Khemakhem
    Journal: Applied Physics A
    Year: 2022

 

 

 

Rajeshree Shinde | Experimental methods | Best Researcher Award

Dr. Rajeshree Shinde | Experimental methods | Best Researcher Award

Sir Vithaldas Thackersey College of Home Science (Empowered Autonomous Status) | India

Dr. Rajeshree Amit Shinde is an Assistant Professor at Sir Vithaldas Thackersey College of Home Science, SNDTWU, Mumbai, with extensive experience in the field of chemistry and education. She has been actively involved in both teaching and administrative responsibilities at various academic levels since 2008. Dr. Shinde is deeply engaged in curriculum development, academic policy, and research. Additionally, she is a coordinator for several committees and has contributed significantly to the quality assurance process at her institution. She is passionate about interdisciplinary learning and has made notable contributions to the integration of science with real-world applications. Dr. Shinde’s research interests span drug-PNP interactions, protein stability, and physicochemical properties of osmolytes.

👨‍🎓Profile

Scopus

🎓Education

Dr. Shinde earned her Ph.D. in Chemistry from the Indian Institute of Technology (IIT) Bombay (2013-2018) under the supervision of Prof. Nand Kishore, focusing on the physicochemical properties of amino acids. She completed her M.Sc. in Chemistry at IIT Bombay (2006-2008), where she demonstrated exceptional academic aptitude with a 7.91 CPI. She also earned her B.Sc. in Chemistry from KET’s V.G. Vaze College, Mumbai, graduating with an impressive 84%. Dr. Shinde has always excelled in her academic journey, from HSC to S.S.C, receiving commendable marks. She has shown significant commitment to continuous professional development through various workshops, training programs, and certifications, including MOOCs and FDPs on topics related to science and education.

🏢Professional Experience

Dr. Shinde has over 15 years of experience in the academic field. Currently, she serves as an Assistant Professor at Sir Vithaldas Thackersey College of Home Science, SNDT Women’s University, since 2010. Prior to this, she was an Assistant Professor at KET’s V.G. Vaze College, Mumbai, from 2008-2009. Throughout her career, Dr. Shinde has undertaken several academic responsibilities, including being a member of the Academic Council, UG Ad-hoc Board of Studies, and a special invitee for the Board of Studies for the Food, Nutrition, and Dietetics Department at her current institution. She has also been involved in the design and development of innovative syllabi for diverse courses. Dr. Shinde has been instrumental in guiding M.Sc. students, shaping the next generation of researchers, and playing a pivotal role in institutional governance.

🏆Awards and Honors

Dr. Shinde’s career is distinguished by several accolades. In 2018, she was the winner of the cartoon competition during Vigilance Awareness Week at IIT Bombay. She has also contributed to national and international journals, with several publications in high-impact research areas such as physicochemical properties of amino acids and quantum dots as antimicrobial agents. Dr. Shinde has actively participated in conferences, workshops, and seminars, presenting her research findings in multiple oral and poster presentations, including those at the Mega Conclave Mission Millets in 2023. Her leadership was recognized in organizing multiple events, including the YUVA Mahotsav and regional seminars. She has also served as an examiner for Ph.D. theses, further cementing her role in the academic community.

📚Research Focus

Dr. Rajeshree Shinde’s research primarily explores drug-PNP interactions, the physicochemical properties of osmolytes, and their impact on protein stability. Her Ph.D. thesis focused on the synergistic effects of amino acids on protein stability, which provides insights into the behavior of osmolytes and biomolecules in various solutions. Dr. Shinde’s expertise includes utilizing advanced instrumental techniques such as UV-VIS spectrophotometry, fluorescence spectrophotometry, and isothermal titration calorimetry. Additionally, her ongoing projects investigate the nutritional efficacy of millets and moringa leaves powder as food fortificants. Dr. Shinde’s interdisciplinary approach combines chemistry with nutrition, making her work relevant to the development of functional foods and dietary interventions. She is actively engaged in research collaborations and has secured research grants for projects on energy bars and protein nanoparticle applications.

🧠Research Skills 

Dr. Rajeshree Amit Shinde is proficient in a range of instrumental techniques that support her research in chemistry and food science. Her expertise includes UV-VIS Spectrophotometry, Fluorescence Spectrophotometry, Isothermal Titration Calorimetry, Circular Dichroism, and High-Performance Liquid Chromatography (HPLC), among others. She has also conducted extensive work with Infrared Spectroscopy to analyze molecular structures and interactions. These techniques enable her to probe the thermodynamic and conformational behavior of proteins in the presence of osmolytes, which is central to her research. Dr. Shinde is skilled in data analysis, utilizing tools like Google Sheets for compiling research data, particularly in the context of AQAR submissions and research publications. Her research not only emphasizes chemical analysis but also integrates interdisciplinary approaches, combining food science, biochemistry, and sustainability, to develop functional food solutions with practical applications.

 

Ramesh Sharma | Experimental methods | Best Researcher Award

Dr. Ramesh Sharma | Experimental methods | Best Researcher Award

DRDO | India

Dr. Ramesh Chand Sharma is a highly respected Group Director & Outstanding Scientist at DRDO (Defence Research and Development Organisation), with a vast array of experience in Laser Physics, Spectroscopy, LiDAR Technologies, and Bio-Photonics. His expertise spans over 25 years of pioneering work in research, development, and technology transfer. He has served in key leadership roles across international institutions and governmental organizations, contributing significantly to national security, environmental science, and defense technologies.

👨‍🎓Profile

Google scholar

Scopus

📚 Early Academic Pursuits

Dr. Sharma’s academic journey started with a Bachelor’s degree in Physics from the University of Garhwal, Srinagar (1989). He continued his education by completing a Master’s degree (1991) in Physics with a specialization in Electronics from the University of Garhwal, and later pursued his Ph.D. in Laser Physics from Banaras Hindu University and IIT Kanpur (1995). His academic foundation laid the groundwork for his future innovative contributions in Laser Spectroscopy and Advanced Technology Development.

💼 Professional Endeavors

Dr. Sharma’s career has been marked by his international exposure and leadership in R&D roles. He has held prestigious positions at world-renowned institutions such as IIT Kanpur, University of California, NASA, and Academia Sinica (Taipei, Taiwan). Over the years, he has advanced to top roles in DRDO, including Project Director, Technical Director, and Group Director. His leadership extends beyond national boundaries, having led significant international collaborations in laser technologies, LiDAR systems, and bio-agent detection technologies.

🧑‍🔬 Contributions and Research Focus

Dr. Sharma’s research spans several cutting-edge fields, with a primary focus on Laser Physics, LiDAR, Spectroscopy, and Bio-Photonics. His pioneering work in Laser DEW (Directed Energy Weapons), LiDAR sensing, and explosive detection has led to breakthroughs in defense technologies and environmental monitoring. He has also contributed to the development of photoacoustic sensors, which have been demonstrated for bio-agent detection from 1 km standoff distance.

🌍 Impact and Influence

Dr. Sharma’s work has had a far-reaching impact, especially in the fields of national security, defense, and environmental protection. His role in developing LiDAR technologies for the detection of chemical and biological warfare agents has been crucial for India’s defense preparedness. His technologies have been transferred to industries, and they are now being used for hazardous material detection, explosive detection, and bio-threat identification. Through his research and innovation, Dr. Sharma continues to influence the scientific community, government agencies, and industry leaders.

📰 Academic Citations

Dr. Sharma’s academic works have been widely cited across the globe, with publications in renowned journals such as Optics Letters, Spectroscopy Letters, and J Laser Optics and Photonics. Notable works include papers on multi-anode PMT Bio-LiDAR systems, quantum laser sensors for defense, and ultra-sensitive detectors for explosive chemicals. His works are regularly cited for their significant advancements in laser-based sensing, detection technologies, and bio-safety applications.

🧑‍🏫 Research Skills

Dr. Sharma is a leader in experimental physics and applied research. His expertise spans laser technology, nonlinear optics, chemical dynamics, and biosensors. He is proficient in laser spectroscopy, THz spectroscopy, and LiDAR systems, and he is instrumental in the development and integration of complex systems. His role in product development and technology transfer showcases his skill in bridging the gap between cutting-edge research and practical, deployable solutions.

🎓 Teaching Experience

Dr. Sharma’s contributions extend to mentoring the next generation of scientists and engineers. He has served as the course director for continuing education programs (CEP) on Lasers, Spectroscopy, and LiDAR for defense applications. As a lecturer and trainer, he has played a pivotal role in developing curricula and workshops that bridge theory with practical applications for emerging technologies in defense and industrial sectors.

🏆 Awards and Honors

Dr. Sharma’s contributions to science and technology have been widely recognized through various prestigious awards:

  • Technology Award (LiDAR for Chemical & Biological Agent Detection) by DRDO (2011).
  • Commendation Certificate for Laser Photoacoustic Sensor Technology for explosive detection (2012).
  • Science Day Lecturer Oration Award (2019).
  • Indian Scientist Award, selected for Best Researcher Award (2022).

These accolades reflect his outstanding achievements and continued excellence in research and technology development.

🏅 Legacy and Future Contributions:

Dr. Sharma’s career is marked by groundbreaking achievements and continued contributions to science and technology. His innovative work in laser-based sensing technologies has already made an impact on national defense and environmental protection. Looking ahead, he aims to expand into quantum technologies, AI-enabled sensing systems, and advanced bio-threat detection systems. As he continues his work at FACET, DRDO, his legacy of scientific leadership and technological innovation will no doubt inspire future generations of researchers.

Publications Top Notes

Temporal evolution of opto-galvanic effect in normal glow discharge of argon

  • Authors: Sharma, R.C., Das, B.K., Sharma, G., Saraswat, V.K., Thakur, S.N.
    Journal: Spectroscopy Letters
    Year: 2024

Early detection and warning of standoff bio-threats using ultraviolet laser wavelengths

  • Authors: Kumar, S., Vats, R., Parmar, A., Das, B.K., Sharma, R.C.
    Journal: Journal of Laser Applications
    Year: 2023

Photomechanical detection of bioaerosol fluorescence free-from solar background

  • Authors: Sharma, R.C., Kumar, S., Parmar, A., Singh, K.P., Thakur, S.N.
    Journal: Optics and Laser Technology
    Year: 2022

Remote mid IR Photoacoustic Spectroscopy for the detection of explosive materials

  • Authors: Mann, M., Rao, A.S., Sharma, R.C.
    Journal: Chemical Physics Letters
    Year: 2021

Standoff pump-probe photothermal detection of hazardous chemicals

  • Authors: Sharma, R.C., Kumar, S., Parmar, A., Prakash, S., Thakur, S.N.
    Journal: Scientific Reports
    Year: 2020

 

 

 

Mohsen Talebkeikhah | Experimental methods | Best Researcher Award

Mr. Mohsen Talebkeikhah | Experimental methods | Best Researcher Award

Doctoral Assistance at École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Mohsen Talebkeikhah is a dedicated researcher specializing in geoscience and geomechanics. Currently pursuing a Ph.D. in Mechanical Engineering at École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, he has received the prestigious Swiss Government Excellence Scholarship. With a strong academic background, he has consistently ranked at the top of his classes during his B.Sc. and M.Sc. studies at Amirkabir University of Technology in Tehran, Iran. Mohsen is not only passionate about his research but also actively contributes to the academic community through various extracurricular activities, including co-authoring a book and participating in scientific associations. His commitment to innovation in the field of geoscience and computational mechanics reflects his drive to make a lasting impact in academia and industry.

Profile

Early Academic Pursuits 🎓

Mohsen Talebkeikhah’s academic journey began with a High School Diploma in Mathematical Physics from Shahid Soltani High School, where he achieved an outstanding GPA of 19.88/20. This strong foundation propelled him into the B.Sc. in Geoscience at Amirkabir University of Technology, where he ranked first in his department with a cumulative GPA of 18.62/20. He continued to excel in his M.Sc. in Geoscience, achieving the same top rank and a GPA of 18.81/20.

Professional Endeavors 🌍

Currently pursuing a Ph.D. in Mechanical Engineering at the prestigious École Polytechnique Fédérale de Lausanne (EPFL), Mohsen has been awarded the Swiss Government Excellence Scholarship, further demonstrating his commitment to advancing his knowledge and skills. His research interests span Geoscience, Geomechanics, and Computational Geomechanics, blending traditional engineering principles with modern computational techniques.

Contributions and Research Focus 🔍

Mohsen has made significant contributions to the field through publications such as “Measurement of Hydraulic Fracture Aperture by Electromagnetic Induction Sensors” (2024). His work encompasses the application of Data Science, Machine Learning, and Artificial Intelligence in geoscience, showcasing his interdisciplinary approach to research.

Impact and Influence 🌟

With numerous awards and accolades, including ranking first in both his undergraduate and graduate programs, Mohsen’s influence extends beyond his academic achievements. He has participated in national contests, earning recognition for his innovative solutions in Reservoir Optimization and Designing Light Drilling Fluids.

Academic Citations 📚

His contributions to the field have been recognized with multiple citations, reflecting his growing impact on geoscience and engineering research. For detailed metrics, Mohsen’s work can be explored on platforms like Google Scholar, where his extensive publication record is available.

Technical Skills ⚙️

Mohsen is proficient in a variety of software tools, including FEM, SolidWorks, CFD (ANSYS-Fluent), and programming languages such as Python, C/C++, and Fortran. His expertise in Matlab and Mathematica further complements his technical skill set, enabling him to tackle complex engineering problems.

Teaching Experience 👨‍🏫

In addition to his research activities, Mohsen has engaged in educational roles, contributing to the academic community as a member of the Scientific Association of Petroleum Engineering at Amirkabir University. His collaborative efforts in co-authoring the book “Alumina-Catalyst” highlight his dedication to knowledge sharing and mentorship.

Legacy and Future Contributions 🌱

As Mohsen Talebkeikhah continues his academic journey, his legacy will undoubtedly include impactful research that bridges the gap between traditional engineering and modern computational techniques. His future contributions are poised to advance the fields of Geoscience and Geomechanics, inspiring the next generation of engineers and researchers. With a solid foundation and a vision for innovation, Mohsen is set to make lasting contributions to both academia and industry.

📖Publication Top Notes

Investigation of effective processes parameters on lead (II) adsorption from wastewater by biochar in mild air oxidation pyrolysis process
  • Authors: Talebkeikhah, F., Rasam, S., Talebkeikhah, M., Salimi, A., Moraveji, M.K.
  • Publication Year: 2022
  • Citations: 16
A Comparison of Machine Learning Approaches for Prediction of Permeability using Well Log Data in the Hydrocarbon Reservoirs
  • Authors: Talebkeikhah, M., Sadeghtabaghi, Z., Shabani, M.
  • Publication Year: 2021
  • Citations: 20
Improving the thermal conductivity of ethylene glycol by addition of hybrid nano-materials containing multi-walled carbon nanotubes and titanium dioxide: applicable for cooling and heating
  • Authors: Rostami, S., Kalbasi, R., Talebkeikhah, M., Goldanlou, A.S.
  • Publication Year: 2021
  • Citations: 63
Physico-chemical properties prediction of hydrochar in macroalgae Sargassum horneri hydrothermal carbonisation
  • Authors: Rasam, S., Talebkeikhah, F., Talebkeikhah, M., Salimi, A., Moraveji, M.K.
  • Publication Year: 2021
  • Citations: 16
Iterative Ensemble Kalman Filter and genetic algorithm for automatic reconstruction of relative permeability curves in the subsurface multi-phase flow
  • Authors: Adibifard, M., Talebkeikhah, M., Sharifi, M., Hemmati-Sarapardeh, A.
  • Publication Year: 2020
  • Citations: 17