Ramesh Sharma | Experimental methods | Best Researcher Award

Dr. Ramesh Sharma | Experimental methods | Best Researcher Award

DRDO | India

Dr. Ramesh Chand Sharma is a highly respected Group Director & Outstanding Scientist at DRDO (Defence Research and Development Organisation), with a vast array of experience in Laser Physics, Spectroscopy, LiDAR Technologies, and Bio-Photonics. His expertise spans over 25 years of pioneering work in research, development, and technology transfer. He has served in key leadership roles across international institutions and governmental organizations, contributing significantly to national security, environmental science, and defense technologies.

👨‍🎓Profile

Google scholar

Scopus

📚 Early Academic Pursuits

Dr. Sharma’s academic journey started with a Bachelor’s degree in Physics from the University of Garhwal, Srinagar (1989). He continued his education by completing a Master’s degree (1991) in Physics with a specialization in Electronics from the University of Garhwal, and later pursued his Ph.D. in Laser Physics from Banaras Hindu University and IIT Kanpur (1995). His academic foundation laid the groundwork for his future innovative contributions in Laser Spectroscopy and Advanced Technology Development.

💼 Professional Endeavors

Dr. Sharma’s career has been marked by his international exposure and leadership in R&D roles. He has held prestigious positions at world-renowned institutions such as IIT Kanpur, University of California, NASA, and Academia Sinica (Taipei, Taiwan). Over the years, he has advanced to top roles in DRDO, including Project Director, Technical Director, and Group Director. His leadership extends beyond national boundaries, having led significant international collaborations in laser technologies, LiDAR systems, and bio-agent detection technologies.

🧑‍🔬 Contributions and Research Focus

Dr. Sharma’s research spans several cutting-edge fields, with a primary focus on Laser Physics, LiDAR, Spectroscopy, and Bio-Photonics. His pioneering work in Laser DEW (Directed Energy Weapons), LiDAR sensing, and explosive detection has led to breakthroughs in defense technologies and environmental monitoring. He has also contributed to the development of photoacoustic sensors, which have been demonstrated for bio-agent detection from 1 km standoff distance.

🌍 Impact and Influence

Dr. Sharma’s work has had a far-reaching impact, especially in the fields of national security, defense, and environmental protection. His role in developing LiDAR technologies for the detection of chemical and biological warfare agents has been crucial for India’s defense preparedness. His technologies have been transferred to industries, and they are now being used for hazardous material detection, explosive detection, and bio-threat identification. Through his research and innovation, Dr. Sharma continues to influence the scientific community, government agencies, and industry leaders.

📰 Academic Citations

Dr. Sharma’s academic works have been widely cited across the globe, with publications in renowned journals such as Optics Letters, Spectroscopy Letters, and J Laser Optics and Photonics. Notable works include papers on multi-anode PMT Bio-LiDAR systems, quantum laser sensors for defense, and ultra-sensitive detectors for explosive chemicals. His works are regularly cited for their significant advancements in laser-based sensing, detection technologies, and bio-safety applications.

🧑‍🏫 Research Skills

Dr. Sharma is a leader in experimental physics and applied research. His expertise spans laser technology, nonlinear optics, chemical dynamics, and biosensors. He is proficient in laser spectroscopy, THz spectroscopy, and LiDAR systems, and he is instrumental in the development and integration of complex systems. His role in product development and technology transfer showcases his skill in bridging the gap between cutting-edge research and practical, deployable solutions.

🎓 Teaching Experience

Dr. Sharma’s contributions extend to mentoring the next generation of scientists and engineers. He has served as the course director for continuing education programs (CEP) on Lasers, Spectroscopy, and LiDAR for defense applications. As a lecturer and trainer, he has played a pivotal role in developing curricula and workshops that bridge theory with practical applications for emerging technologies in defense and industrial sectors.

🏆 Awards and Honors

Dr. Sharma’s contributions to science and technology have been widely recognized through various prestigious awards:

  • Technology Award (LiDAR for Chemical & Biological Agent Detection) by DRDO (2011).
  • Commendation Certificate for Laser Photoacoustic Sensor Technology for explosive detection (2012).
  • Science Day Lecturer Oration Award (2019).
  • Indian Scientist Award, selected for Best Researcher Award (2022).

These accolades reflect his outstanding achievements and continued excellence in research and technology development.

🏅 Legacy and Future Contributions:

Dr. Sharma’s career is marked by groundbreaking achievements and continued contributions to science and technology. His innovative work in laser-based sensing technologies has already made an impact on national defense and environmental protection. Looking ahead, he aims to expand into quantum technologies, AI-enabled sensing systems, and advanced bio-threat detection systems. As he continues his work at FACET, DRDO, his legacy of scientific leadership and technological innovation will no doubt inspire future generations of researchers.

Publications Top Notes

Temporal evolution of opto-galvanic effect in normal glow discharge of argon

  • Authors: Sharma, R.C., Das, B.K., Sharma, G., Saraswat, V.K., Thakur, S.N.
    Journal: Spectroscopy Letters
    Year: 2024

Early detection and warning of standoff bio-threats using ultraviolet laser wavelengths

  • Authors: Kumar, S., Vats, R., Parmar, A., Das, B.K., Sharma, R.C.
    Journal: Journal of Laser Applications
    Year: 2023

Photomechanical detection of bioaerosol fluorescence free-from solar background

  • Authors: Sharma, R.C., Kumar, S., Parmar, A., Singh, K.P., Thakur, S.N.
    Journal: Optics and Laser Technology
    Year: 2022

Remote mid IR Photoacoustic Spectroscopy for the detection of explosive materials

  • Authors: Mann, M., Rao, A.S., Sharma, R.C.
    Journal: Chemical Physics Letters
    Year: 2021

Standoff pump-probe photothermal detection of hazardous chemicals

  • Authors: Sharma, R.C., Kumar, S., Parmar, A., Prakash, S., Thakur, S.N.
    Journal: Scientific Reports
    Year: 2020

 

 

 

Huanqin Wang | Experimental methods | Best Researcher Award

Prof. Huanqin Wang | Experimental methods | Best Researcher Award

Hefei Institutes of Physical Science, Chinese Academy of Sciences | China

Professor Huanqin Wang is a distinguished researcher and educator currently serving as a professor at the Hefei Institutes of Physical Science, Chinese Academy of Sciences. He specializes in ultrafine particle sensing and environmental detection technologies. With a strong academic background, including a Ph.D. in microelectronics and solid-state electronics from the University of Science and Technology of China, he has made substantial contributions to improving environmental quality and addressing pollution through innovative technological solutions.

👨‍🎓 Profile

Scopus

Early Academic Pursuits 🎓

Professor Wang earned his B.S. degree in applied physics in 2004, followed by a Ph.D. in microelectronics and solid-state electronics in 2009 from the University of Science and Technology of China. His academic journey laid the foundation for his future research and expertise in environmental sensing technologies, leading to his role as a professor at the State Key Laboratory of Transducer Technology, part of the Institute of Intelligent Machine.

Professional Endeavors 💼

Currently, Wang is a professor at the Chinese Academy of Sciences, where he also manages research projects funded by prestigious national programs such as the National Key Research and Development Program of China and the National Natural Science Fund of China. Over his career, he has been instrumental in driving several projects aimed at pollution control and sensing technologies that address real-world environmental issues.

Contributions and Research Focus 🌱

Professor Wang’s primary research interest lies in the development of new technologies for mobile pollution source emission detection, with a particular focus on ultrafine particle sensing. He has developed key equipment such as the miniature atmospheric ultrafine particle size spectrometer and an on-board particulate matter emission testing system, which have been mass-produced and successfully applied in urban air quality evaluations and vehicle emission retrofits.

Impact and Influence 🌍

Wang’s work has made significant impacts on pollution control efforts, especially in the areas of diesel vehicle emissions and urban particulate monitoring. His devices are now used to assess the effectiveness of diesel vehicle particulate filter retrofits and are deployed in cities such as Tianjin and Tangshan. With over 70 published articles and 60 patents, Wang’s research has shaped how we understand and address air quality and emissions in modern cities.

Academic Cites 📚

Professor Wang’s publications have been widely recognized, with a citation index of 828. His peer-reviewed articles in SCI, Scopus, and other respected journals have become critical resources for the scientific community, showcasing the high relevance and impact of his research on environmental science and technology.

Research Skills 🛠️

Professor Wang excels in various research methodologies, particularly in sensor technology and environmental detection systems. His expertise spans from conceptualization and design to the implementation of cutting-edge sensing devices. Additionally, his experience in consultancy and industry projects further demonstrates his ability to translate academic research into practical, real-world solutions.

Teaching Experience 👨‍🏫

As a professor with the Institute of Intelligent Machine, Professor Wang has also contributed to graduate-level education in the fields of microelectronics, sensor technology, and environmental science. His teaching influences future generations of researchers and engineers who will continue to address global environmental challenges.

Legacy and Future Contributions 🔮

Looking forward, Professor Wang’s continued research promises to push the boundaries of environmental monitoring technologies. His development of more advanced sensing devices will play a pivotal role in addressing global pollution and contributing to sustainable urban development. His legacy will undoubtedly influence both the scientific community and policy makers in the fight against environmental degradation and climate change.

  Publications Top Notes

Electrostatic vehicle exhaust particle sensor for the evaluation of the diesel particulate filter (DPF)

  • Authors: Sun, Q., Wang, H., Liu, J., Yu, F., Gui, H.
    Journal: Instrumentation Science and Technology
    Year: 2025

Simulation of electrostatic particulate matter sensor regeneration based on the particulate deposition patterns

  • Authors: Liu, J., Wang, H., Sun, Q., Yu, F., Feng, B.
    Journal: Sensor Review
    Year: 2024

Analysis of excessive NOx emission from tampered heavy-duty vehicles based on real-time data and its impact on air pollution

  • Authors: Li, Y., Wang, H., Fu, M., Yang, Y., Gui, H.
    Journal: Atmospheric Pollution Research
    Year: 2024

Structural simulation and performance evaluation of self-priming electrostatic diesel vehicle emission particle sensor

  • Authors: Sun, Q., Wang, H., Huang, G., Gui, H., Chen, D.-R.
    Journal: Instrumentation Science and Technology
    Year: 2024

Beijing Heavy-Duty Diesel Vehicle Battery Capacity Conversion and Emission Estimation in 2022

  • Authors: Fu, M., Yang, Y., Li, Y., Yu, F., Liu, J.
    Journal: Sustainability (Switzerland)
    Year: 2023

 

 

Şükrü KARATAŞ | Experimental methods | Excellence in Research

Prof. Şükrü KARATAŞ | Experimental methods | Excellence in Research

Kahramanmaraş Sütçü İmam University | Turkey

Prof. Şükrü Karataş is a renowned professor in the Department of Physics at Kahramanmaraş Sütçü İmam University (KSÜ). With nearly 100 scientific publications and over 3,200 citations, Prof. Karataş has become a leading figure in the field of semiconductor devices and solar cell technology. His research primarily focuses on the preparation and electrical and dielectric properties of Schottky diodes, MS, MIS, MOS structures, and solar cells, making significant contributions to material science and energy technology.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 🎓

Prof. Karataş’s academic journey began at Dicle University in Diyarbakır, Turkey, where he earned his B.S. in Physics in 1992. Driven by a passion for understanding the fundamental aspects of physics, he pursued advanced studies at Kahramanmaraş Sütçü İmam University and Gazi University, obtaining his M.S. (1996) and Ph.D. (2003) degrees, respectively. His deep interest in semiconductors and material sciences has been a defining feature of his academic career.

Professional Endeavors 💼

Prof. Karataş has been an integral part of the KSÜ Faculty of Science, starting as a Research Assistant and progressing to a full Professor. He has been involved in numerous research projects, both completed and ongoing, taking on executive roles and contributing to various fields of semiconductor physics and solar energy. His expertise has been sought by national and international symposia, where he has been invited as a speaker, showcasing his influence in the scientific community.

Contributions and Research Focus 🔬

Prof. Karataş is widely recognized for his contributions to semiconductor devices such as Schottky diodes, MS, MIS, and MOS structures, with a focus on their electrical and dielectric properties in relation to temperature, frequency, and radiation. His pioneering work in solar cells has garnered significant attention for its practical applications in renewable energy. The depth of his research in the preparation, analysis, and optimization of these devices is central to his academic identity.

Academic Cites 📑

Prof. Karataş has established himself as a highly respected researcher, amassing over 3,200 citations across nearly 100 published articles. His cited work speaks to the relevance and impact of his research, particularly in semiconductor devices and solar energy systems. His papers are often referenced in studies concerning the electrical and dielectric properties of materials used in high-tech applications, ensuring his influence reaches across a wide range of scientific disciplines.

Research Skills 🔧

Prof. Karataş possesses a diverse skill set, including expertise in the preparation and analysis of semiconductor materials and solar cells. His ability to explore the electrical properties of Schottky diodes and MOS structures under varying conditions such as temperature, frequency, and radiation has contributed significantly to the advancement of semiconductor technology. Additionally, his leadership in executing projects has showcased his ability to collaborate and manage large, complex research efforts.

Teaching Experience 👨‍🏫

Prof. Karataş is a passionate educator who has taught a wide range of advanced courses at the master’s and doctoral levels. His teaching spans subjects related to semiconductors, material science, and solar energy, and he has mentored many graduate students in these fields. His dedication to academic excellence is evident not only through his lectures but also through his role as a graduate advisor, guiding students in their research pursuits and helping shape the next generation of scientists.

🌟 Legacy and Future Contributions

Prof. Karataş’s legacy lies in his pioneering research, impactful publications, and the success of his students. Looking ahead, he aims to expand his work in renewable energy technologies and foster global collaborations to further advance the field of semiconductor physics. His vision ensures that his contributions will continue to influence the scientific community for years to come.

Publications Top Notes

 

 

Robert CHEHAB | Experimental methods | Best Innovation Award

Dr.Robert CHEHAB | Experimental methods | Best Innovation Award

Accelerator physicist at IN2P3/CNRS in France

Dr. Robert Chehab, born on October 22, 1937, in Alexandria, Egypt, is a renowned physicist specializing in accelerator physics. He holds French nationality and has had a prestigious academic and scientific career. Dr. Chehab completed his engineering degree from the prestigious École Nationale Supérieure des Télécommunications (now TELECOM-Paris-Tech) in 1963, followed by a PhD in Physical Sciences from Université d’Orsay in 1975. His work has been instrumental in advancing our understanding of positron sources, channeling radiation, and radiation physics. Over his career, he has collaborated with leading institutions such as CERN, KEK, DESY, and SLAC. As a scientist and educator, he has mentored PhD students in radiation and positron source research. Fluent in five languages, Dr. Chehab has contributed significantly to accelerator physics research globally.

Profile:

Education:

Dr. Robert Chehab’s academic journey began at the École Nationale Supérieure des Télécommunications (ENST), now known as TELECOM-Paris-Tech, where he obtained his engineering degree in 1963. His rigorous technical education at ENST laid the foundation for his subsequent focus on accelerator physics. In 1975, he earned his PhD (Docteur-Ingénieur en Sciences Physiques) from the Université d’Orsay. His PhD work explored fundamental concepts in radiation physics and beam dynamics, setting the stage for a prolific research career. Throughout his educational journey, Dr. Chehab showed a deep understanding of complex scientific phenomena such as Cherenkov radiation, positron sources, and channeling radiation, positioning himself as a leading figure in his field. His multidisciplinary expertise has also allowed him to maintain fluency in French, English, Italian, Russian, and Arabic, further enhancing his global scientific impact.

Professional experience:

Dr. Robert Chehab has accumulated extensive experience in both academic and international research environments. He has spent a significant portion of his career at Université Paris-Saclay, where he has led various research projects on accelerator physics. Dr. Chehab has worked in prestigious laboratories worldwide, including extended stays at KEK in Japan, where he conducted research on positron sources and channeling radiation. He also contributed to experiments at DESY in Germany, focusing on transition radiation, and collaborated with BINP-Novosibirsk on channeling radiation studies. His leadership at CERN, particularly in the WA 103 experiment, has cemented his reputation as a leader in accelerator and radiation physics. Additionally, Dr. Chehab has supervised PhD students and played a critical role in mentoring the next generation of scientists.

Research focus:

Dr. Robert Chehab’s research focuses primarily on accelerator physics, with an emphasis on radiation studies. His work spans various topics, including positron sources, channeling radiation, Cherenkov radiation, transition radiation, and photoemission. He has been actively involved in understanding and developing novel radiation physics techniques for advanced accelerator applications. Dr. Chehab’s research also delves into beam dynamics and RF deflectors, expanding the theoretical and practical frameworks of accelerator science. His notable collaborations with CERN on positron source development for the LEP experiment and SLAC on crystal radiator damage tests have pushed the boundaries of what is known about particle interactions with radiation. His work is essential for innovations in particle accelerators, helping to develop the technology used in numerous high-energy physics experiments.

Awards & Honor:

Throughout his distinguished career, Dr. Robert Chehab has been recognized for his contributions to accelerator physics and radiation studies. He has been involved in numerous international collaborations with esteemed institutions such as CERN, KEK, SLAC, and DESY, where his innovative research in positron sources and radiation physics has earned him accolades. Dr. Chehab’s leadership in major projects, such as the LEP positron source collaboration at CERN, has further solidified his stature in the scientific community. His research has been published in leading journals like Nuclear Instruments and Methods, Physical Review, and Physics Letters. While his awards and recognitions are primarily rooted in his research, his contribution to academic mentorship, especially his guidance of PhD students in advanced radiation physics, has been equally commendable. His work continues to impact both experimental methods and the broader scientific community.

Publication Top Notes:

  • From bremsstrahlung to channeling radiation: A promising way for positron generation
    Chehab, R.
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1060, 169056
    Citations: 0
  • Advantages of hybrid positron sources with granular converters
    Chehab, R., Chaikovska, I., Alharthi, F., Wallon, S., Sievers, P.
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1060, 168994
    Citations: 0
  • Benchmarking the FCC-ee positron source simulation tools using the SuperKEKB results
    Alharthi, F., Chaikovska, I., Chehab, R., Miyahara, F., Mytrochenko, V.
    Journal of Physics: Conference Series, 2024, 2687(2), 022010
    Citations: 0
  • Radiation in oriented crystals: Innovative application to future positron sources
    Soldani, M., Alharthi, F., Bandiera, L., Sytov, A., Tikhomirov, V.
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1058, 168828
    Citations: 1
  • Crystal-based pair production for a lepton collider positron source
    Bandiera, L., Bomben, L., Camattari, R., Tikhomirov, V., Vallazza, E.
    European Physical Journal C, 2022, 82(8), 699
    Citations: 6
  • Positron sources: From conventional to advanced accelerator concepts-based colliders
    Chaikovska, I., Chehab, R., Kubytskyi, V., Hogan, M.J., Martyshkin, P.
    Journal of Instrumentation, 2022, 17(5), P05015
    Citations: 12
  • HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4
    Abada, A., Abbrescia, M., AbdusSalam, S.S., Zupan, J., Zurita, J.
    European Physical Journal: Special Topics, 2019, 228(5), pp. 1109–1382
    Citations: 159
  • FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3
    Abada, A., Abbrescia, M., AbdusSalam, S.S., Zupan, J., Zurita, J.
    European Physical Journal: Special Topics, 2019, 228(4), pp. 755–1107
    Citations: 501
  • FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1
    Abada, A., Abbrescia, M., AbdusSalam, S.S., Zupan, J., Zurita, J.
    European Physical Journal C, 2019, 79(6), 474
    Citations: 540
  • FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2
    Abada, A., Abbrescia, M., AbdusSalam, S.S., Zupan, J., Zurita, J.
    European Physical Journal: Special Topics, 2019, 228(2), pp. 261–623
    Citations: 619

Conclusion:

Dr. Robert Chehab’s extensive experience, significant contributions to accelerator physics, and international collaborations make him a strong candidate for the Best Researcher Award. His mentorship and prolific publication record add to his credentials. To further elevate his impact, engaging with newer fields of research and amplifying his public outreach would strengthen his candidacy for future recognitions.

 

Priyanka Sahu | Experimental methods | Young Scientist Award

Dr. Priyanka Sahu | Experimental methods | Young Scientist Award

Assistant Professor at Rajiv Gandhi University of Knowledge of Technologies-RK Valley (AP-IIIT RK Valley), India

Dr. Priyanka Sahu is an accomplished academic and researcher, currently serving as an Assistant Professor in the Department of Electronics and Communication Engineering at Rajiv Gandhi University of Knowledge Technologies (AP-IIIT), Idupulapaya, Andhra Pradesh. With a solid foundation in Physics and Astronomy (Materials Science), she holds an M.Tech degree from NIT Rourkela and a Ph.D. from IIT Indore. Her research focuses on the development of high entropy alloys and soft magnetic materials, with expertise in experimental methodologies such as sol-gel auto-combustion and mechanical alloying. Dr. Sahu has published numerous high-impact papers, presented at international conferences, and received prestigious accolades like the Best Researcher Award and Best Oral Presentation. She is a passionate educator and an innovative thinker, contributing significantly to both research and academia.

Profile:

Education

Dr. Priyanka Sahu has pursued an impressive academic journey, earning her Ph.D. in Materials Science from the Indian Institute of Technology Indore (IITI) in 2023, where her dissertation focused on developing and characterizing high-entropy soft magnetic alloys. She holds an M.Tech (Research) degree in Physics and Astronomy with a specialization in Materials Science from the National Institute of Technology Rourkela (NITR) in 2017, during which she studied the electrical and magnetic properties of modified strontium hexaferrite. Prior to this, she completed her Bachelor of Engineering in Electronics and Telecommunication at the Government Engineering College Bilaspur in 2014, following a diploma in the same discipline from the Government Polytechnic College Ambikapur in 2011. Throughout her academic journey, Dr. Sahu has consistently maintained high honors and distinctions, showcasing her dedication to research and learning.

 

Professional experience

Dr. Priyanka Sahu has accumulated diverse teaching and research experience. She is currently serving as an Assistant Professor in the Department of Electronics and Communication Engineering at Rajiv Gandhi University of Knowledge Technologies (AP-IIIT), Idupulapaya, Andhra Pradesh, since March 2024. Prior to this, Dr. Sahu worked as a Teaching Assistant and researcher at IIT Indore from 2017 to 2023, during which she handled multiple labs and courses related to physical metallurgy and material science. Her research experience also includes working at NIT Rourkela in a Physics Laboratory. Dr. Sahu has expertise in handling various high-end instruments such as X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Differential Scanning Calorimetry (DSC), which are crucial in material characterization. She has also participated in numerous national and international conferences as a presenter and invited speaker, furthering her knowledge and sharing insights into her specialized research areas.

Research focus

Dr. Priyanka Sahu’s research is centered around the development of advanced materials, particularly high-entropy alloys (HEAs), soft magnetic materials, and magnetocaloric materials. Her work explores novel synthesis methods, including mechanical alloying and sol-gel auto-combustion, to develop new materials with superior thermal, magnetic, and electrical properties. Dr. Sahu has extensively studied the microstructural and magnetic behaviors of multi-component alloys, investigating the influence of elements like Si and Mn on phase evolution and magnetic properties. She also focuses on thermodynamic modeling using Redlich-Kister formalism and Miedema’s semi-empirical models for predicting phase formations in these alloys. Her research aims to apply theoretical models to experimental data for better material characterization, especially in high-entropy amorphous alloys. Dr. Sahu’s work is highly interdisciplinary, impacting fields like nanotechnology, metallurgy, and condensed matter physics.

Award and Recognition

Dr. Priyanka Sahu has received numerous accolades throughout her academic and professional career. She was awarded the prestigious “Best Researcher Award” at the 16th edition of International Research Awards in Atomic, Molecular, and Optical Physics in 2024. Her outstanding oral presentation in the “Progress in Metallurgy & Materials (ISPMM-2023)” at IIT Indore earned her a Best Oral Presentation award. Additionally, she secured the 1st runner-up spot in poster presentation during the Research and Industrial Conclave (RIC-2023) at IIT Indore. Dr. Sahu has also received multiple honorariums for her contributions to various programs such as the QIP program at IIT Indore and TEQIP-III in 2018. She was recognized for her early academic excellence with a merit scholarship at Government Polytechnic College Ambikapur, and she ranked 1st in class during her diploma years. These honors reflect her commitment to research and academia.

Publication Top Notes:

  • Synthesis and characterization of hydrogenated novel AlCrFeMnNiW high entropy alloy
    ✍️ SK Dewangan, VK Sharma, P Sahu, V Kumar
    📘 International Journal of Hydrogen Energy, 45(34), 16984-16991, 2020, cited 62 times
  • Investigating the effect of multiple grain–grain interfaces on electric and magnetic properties of [50 wt% BaFe12O19–50 wt% Na0.5Bi0.5TiO3] composite system
    ✍️ R Pattanayak, R Muduli, RK Panda, T Dash, P Sahu, S Raut, S Panigrahi
    📘 Physica B: Condensed Matter, 485, 67-77, 2016, cited 42 times
  • Microstructure and magnetic behavior of FeCoNi (Mn–Si) x (x= 0.5, 0.75, 1.0) high-entropy alloys
    ✍️ P Sahu, S Solanki, S Dewangan, V Kumar
    📘 Journal of Materials Research, 34(5), 829-840, 2019, cited 30 times
  • Dielectric, ferroelectric and impedance spectroscopic studies in TiO2-doped AgNbO3 ceramic
    ✍️ R Muduli, R Pattanayak, S Raut, P Sahu, V Senthil, S Rath, P Kumar, …
    📘 Journal of Alloys and Compounds, 664, 715-725, 2016, cited 21 times
  • Effect of grain size on electric transport and magnetic behavior of strontium hexaferrite (SrFe12O19)
    ✍️ P Sahu, SN Tripathy, R Pattanayak, R Muduli, N Mohapatra, S Panigrahi
    📘 Applied Physics A, 123, 1-10, 2017, cited 15 times
  • Microstructural, magnetic, and geometrical thermodynamic investigation of FeCoNi (MnSi) x (0.0, 0.1, 0.25, 0.5, 0.75, 1.0) high entropy alloys
    ✍️ P Sahu, S Samal, V Kumar
    📘 Materialia, 18, 101133, 2021, cited 7 times
  • Impact of Si and Mg on Microstructural and Magnetic Behavior of Fe-Co-Ni (Mg-Si)x (x = 0.00,0.1,0.2) Multicomponent Alloys
    ✍️ P Sahu, AS Bagri, MD Anoop, M Kumar, V Kumar
    📘 Silicon, 12, 893-902, 2020, cited 7 times
  • Microstructural, magnetic, and geometrical thermodynamic investigation of FeCoNi (MnSi) x (0.0, 0.1, 0.25, 0.5, 0.75, 1.0) high entropy alloys
    ✍️ P Sahu, S Samal, V Kumar
    📘 Materialia, 18, 101133, Patent NO
  • Microstructure, Non-isothermal Crystallization Kinetics and Magnetic Behaviour Study of [FeCoNi100-x(SiMn)x] High Entropy Amorphous Alloys Synthesized by …
    ✍️ P Sahu, S Samal, V Kumar
    📘 Metals and Materials International, 29(9), 2684-2709, 2023, cited 3 times
  • Phase Evolution and Soft Magnetic Behavior of Mechanically Alloyed Fe–Co–Ni Medium Entropy Alloy at Different Disk Angular Velocity
    ✍️ P Sahu, S Samal, V Kumar
    📘 Transactions of the Indian Institute of Metals, 76(11), 3065-3078, 2023, cited 2 times
  • Investigation of the structural, electrical, and magnetic behavior of Co3+-Ti4+ doped strontium hexaferrite: validation of measured and theoretical models
    ✍️ P Sahu, PK Sahu, S Panigrahi
    📘 Journal of Materials Science: Materials in Electronics, 35(10), 709, 2024, cited 1 time
  • Influence of Si and Mn on the Phase Formation, Crystallization Kinetics, and Enhanced Magnetic Properties of Mechanically Alloyed NiCoFe(SiMn)x High Entropy …
    ✍️ P Sahu, S Samal, V Kumar
    📘 Silicon, 15(12), 5367-5392, 2023, cited 1 time
  • An assessment of the mechanically alloyed equiatomic FeCoNiMnSi high entropy amorphous alloy for non-isothermal crystallization kinetics and magnetocaloric refrigeration …
    ✍️ P Sahu, S Samal, V Kumar
    📘 Materials Characterization, 216, 114269, 2024

Conclusion

Overall, Dr. Priyanka Sahu is a well-rounded researcher with a solid background in materials science, excellent technical skills, a significant publication record, and previous awards. Her contributions to the field of high entropy alloys and magnetocaloric materials are impressive and impactful. While focusing on securing research funding and pursuing interdisciplinary research could enhance her profile further, she is undoubtedly a deserving candidate for the “Best Researcher Award.”