Zhongxue Feng | Theoretical Advances | Outstanding Scientist Award

Assoc. Prof. Dr. Zhongxue Feng | Theoretical Advances | Outstanding Scientist Award

Kunming University of Science and Technology | China

👨‍🎓 Profile

🧑‍🎓 Early Academic Pursuits

Zhongxue Feng’s academic journey began at Chongqing University, where he earned his Bachelor’s Degree in Materials Physics in 2007. He continued his studies at the same institution, achieving a PhD in Materials Science in 2012 under the mentorship of Prof. Fusheng Pan, an Academician of the Chinese Academy of Engineering. This strong academic foundation laid the groundwork for his later research. Feng further honed his expertise through a Visiting Scholar position at Chongqing University (2018-2019), under the guidance of the same distinguished professor. His early academic pursuits focused on materials science and alloy materials, which would continue to shape his research trajectory.

💼 Professional Endeavors

Feng Zhongxue’s professional career has spanned both academic and industrial roles. He is currently an Associate Professor at the School of Materials Science and Engineering at Kunming University of Science and Technology (KMUST) and serves as the Honorary Dean of the School of Mathematics and Computer Science at Anshun University. His industry experience includes a role as Deputy Chief Engineer at Yunnan Titanium Industry Co., Ltd., which enriched his practical knowledge of material applications in industry. Throughout his career, Feng has also supervised numerous graduate and undergraduate projects, further solidifying his presence in the field.

🔬 Contributions and Research Focus

Feng’s research contributions are groundbreaking, particularly in the areas of alloy materials, mechanical properties, and electromagnetic shielding. He has led various significant projects, such as the Yunnan Major Project on Heat-resistant Aluminium-based Composites and research on Ti6Al4V Titanium Alloys funded by the Sichuan Provincial Department of Science and Technology. His research focuses on advancing material properties like mechanical strength, electromagnetic shielding, and heat resistance. Feng’s work in creating ultrafine microstructures in titanium alloys and biphase reinforced composites has positioned him as a leader in materials engineering. He has made notable strides in electromagnetic shielding and advanced alloy processing technologies.

🌍 Impact and Influence

Feng Zhongxue’s research impact extends globally, with over 40 research papers published, 14 of which are SCI-indexed, and 6 patents. His work has significantly influenced the field of materials science, particularly in the development of new materials with enhanced mechanical properties and electromagnetic shielding capabilities. His research not only improves the understanding of material structures but also leads to the creation of innovative materials that have practical applications in industries like electronics, automotive, and aerospace. Feng’s contributions extend beyond the laboratory, with his patents offering solutions to challenges in materials engineering, particularly for magnesium alloys and nanoparticle-based materials.

📚 Academic Citations and Recognition

Feng’s academic work is highly regarded within the scientific community, with his research cited extensively in top-tier journals. Publications like his research on the stacking fault energy in ZrCo alloys and hot deformation behavior in copper alloys have received recognition for advancing materials science knowledge. These influential studies have not only enriched academic literature but also provided a basis for further innovations in alloy development and material behavior under extreme conditions. His scientific contributions continue to influence both academia and industry, making him a key figure in his field.

🔧 Technical Skills

Feng Zhongxue is highly skilled in several technical areas, including materials characterization, alloy fabrication, and advanced material processing. His expertise extends to electromagnetic shielding, mechanical property evaluation, and metallurgical engineering. Feng is proficient in the use of simulation tools for material behavior prediction, such as in the welding joint microstructure evolution and complex deformation modeling. His ability to combine experimental work with computational simulations has led to significant advancements in understanding the microstructural evolution and mechanical behavior of alloys.

👨‍🏫 Teaching Experience

Feng Zhongxue has an extensive teaching background, serving as both a lecturer and associate professor at Kunming University of Science and Technology. His courses span a range of topics, including materials science, mechanical properties, and electromagnetic shielding. He has also supervised numerous graduate and master’s students, guiding their research on alloy materials and material properties. Feng’s educational contributions extend to teaching reforms, such as the welding joint structure evolution simulation and virtual experimentation, ensuring that students are equipped with both theoretical and practical knowledge.

Top Noted Publications

Effect of stacking fault energy on B2 ZrCo phase transition and nanotwins formation in Zr54.5Co33.5Al12 alloy prepared by rapid solidification
  • Authors: Zhong, L. P., Z. X. Feng*, S. Zhao, J. Tan, C. J. Li, J. H. Yi, and J. Eckert
    Journal: Vacuum
    Year: 2024
Exploring hot deformation behavior of the solutionized Cu–15Ni–8Sn alloy through constitutive equations and processing maps
  • Authors: Dong, Xuemao, Jing Xu, Zhongxue Feng*, Jialiang Dong, Caiju Li, and Jianhong Yi
    Journal: Journal of Materials Research and Technology
    Year: 2024
Hot deformation behaviour and optimization of process parameters for an as-cast Cu–20Ni–20Mn alloy
  • Authors: Xu, Jing, Xuemao Dong, Zhongxue Feng, Jialiang Dong, Caiju Li, and Jianhong Yi
    Journal: Journal of Materials Research and Technology
    Year: 2023
Structural evolution of MgO layer in Mg-based composites reinforced by Metallic Glasses during the SPS sintering process
  • Authors: Zhang, Chao, Zhongxue Feng, Yuhua Zhang, Zhize Xia, Nadimullah Hakimi, Tongman Li, Baoshuai Xue, and Jun Tan
    Journal: Vacuum
    Year: 2023
High ductility CrCoNi medium entropy alloy prepared by liquid nitrogen temperature rolling and short time annealing at moderate temperature
  • Authors: Chen, Jinliang, Zhongxue Feng, Baoshuai Xue, and Jianhong Yi
    Journal: Journal of Materials Research and Technology
    Year: 2023

 

 

 

Mohammadreza khani | Experimental methods | Best Researcher Award

Assoc Prof Dr. Mohammadreza khani | Experimental methods | Best Researcher Award

Associate Professor at shahid Beheshti University, Iran

Dr. Mohammadreza Khani is a prominent researcher and educator specializing in plasma technology. With over 14 years of experience in the field, he has made significant contributions to research, design, fabrication, and development processes related to plasma systems. As an Assistant Professor at Shahid Beheshti University since 2016, he plays a pivotal role in advancing plasma technology applications in various sectors, including medicine, environmental science, and food safety.

Profile:

🎓 Early Academic Pursuits

Mohammadreza Khani began his academic journey at Shiraz University, where he earned his BSc in Physics (2004-2008). He continued his studies at Shahid Beheshti University, achieving an MSc in Plasma Engineering (2008-2011) and a Ph.D. in Photonics (Plasma) (2011-2014). His postdoctoral work at the Laser and Plasma Research Institute (2014-2016) solidified his expertise in plasma technology.

💼 Professional Endeavors

Dr. Khani has been an Assistant Professor at Shahid Beheshti University since 2016, where he holds several significant positions. He is the Director of the Plasma Chemistry and Environmental Applications Laboratory and the Plasma Surface Treatment Laboratory, as well as an Associate Director in both the Plasma Medicine Laboratory and the Plasma Application Laboratory in the Food Industry. His leadership in these roles highlights his commitment to advancing plasma technology across various fields.

🧪 Contributions and Research Focus

With 14 years of experience in plasma technology and 8 years in thermal plasma technology, Dr. Khani has made notable contributions, including the design and fabrication of 7 industrial-scale plasma systems and 20 lab-scale systems. His patents focus on crucial advancements, such as cracking heavy hydrocarbons and plasma processing of various fuels, showcasing his innovative approach to addressing environmental and industrial challenges.

🌍 Impact and Influence

Dr. Khani is recognized as one of the top 5 plasma scientists in Iran, with his research receiving over 960 citations and an H-index of 18. His influence extends beyond academia, impacting industries like petrochemicals and healthcare. As a member of the Scientific Committee for the Annual Conference on Plasma Engineering and Physics of Iran, he plays a vital role in shaping the future of plasma research in the country.

📚 Academic Citations

With 70 peer-reviewed papers published, Dr. Khani has established a robust academic presence. His citations reflect the significance of his work in the scientific community, underscoring his contributions to plasma technology and its applications.

🔧 Technical Skills

Dr. Khani possesses extensive technical skills in plasma technology, including design and fabrication of plasma systems, plasma pyrolysis, and surface treatments. His hands-on experience in both laboratory and industrial settings equips him to tackle complex challenges in various applications.

👨‍🏫 Teaching Experience

Dr. Khani has a strong teaching background, having instructed courses such as Plasma Engineering, Plasma Chemistry, and Basic Physics at Shahid Beheshti University since 2011. His dedication to education is evident through his consistent engagement with students across multiple levels and subjects.

📖Publication Top Notes:

Feasibility study of plasma pyrolysis on dairy waste

             Authors: Fasihi, M., Mohammadhosseini, B., Ostovarpour, F., Khani, M., Shokri, B.
             Publication Year: 2024
             Citations: 1

Development and characterization of a spark plasma device designed for medical and aesthetic applications

              Authors: Reza Lotfi, M., Khani, M., Moradi, A., Razaghiha, E., Shokri, B.
              Publication Year: 2024
              Citations: 0

Plasma Engineering toward Improving the Microwave-Absorbing/Shielding Feature of a Biomass-Derived Material

               Authors: Selseleh-Zakerin, E., Mirkhan, A., Shafiee, M., Tavassoli, S.H., Peymanfar, R.
               Publication Year: 2024
               Citations: 6

 Plasma pyrolysis feasibility study of Spent Caustic waste to hydrogen production

               Authors: Aghayee, R., Khani, M., Ostovarpour, F., Mohammadhosseini, B., Shokri, B.
               Publication Year: 2024
               Citations: 2

Parametric investigation and RSM optimization of DBD plasma methods (direct & indirect) for H2S conversion in the air

                Authors: Razavi Rad, S.A., Khani, M., Hatami, H., Shafiee, M., Shokri, B.
                Publication Year: 2024
                Citations: 1

CO2 conversion in a dielectric barrier discharge plasma by argon dilution over MgO/HKUST-1 catalyst using response surface methodology

                 Authors: Hatami, H., Khani, M., Razavi Rad, S.A., Shokri, B.
                 Publication Year: 2024
                 Citations: 5

The FEDBD plasma’s quantitative investigation of skin parameters: Skin elasticity, thickness, density, tissue oxygenation, perfusion, and edema

                 Authors: Charipoor, P., Nilforoushzadeh, M.A., Khani, M., Eftekhari, M., Shokri, B.
                 Publication Year: 2024
                 Citations: 2