Abdelmounaim Chetoui | Experimental methods | Academic Excellence in Applied Physics Award

Dr. Abdelmounaim Chetoui | Experimental methods | Academic Excellence in Applied Physics Award

Research assistant, CRTSE, Algeria

Dr. Abdelmounaim Chetoui is a dedicated researcher in materials physics, specializing in semiconductors, thin films, and nanostructures. With over six years of research experience, he is currently affiliated with the Research Center in Semiconductor Technology for Energetics (CRTSE) in Algiers. He holds a Ph.D. in Materials Physics from USTHB, Algeria, and has pursued academic training in both Algeria and France. His expertise includes photoluminescence, spray pyrolysis, and nanomaterials for photovoltaics and gas sensors. Dr. Chetoui has an excellent grasp of interdisciplinary research and experimental design.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Chetoui began his academic journey with a Bachelor’s in Fundamental Physics from the University of Sétif, followed by a Maitrise and Master’s in Materials Engineering from the University of Strasbourg, France. His academic focus was on solid-state physics and materials science, laying a strong foundation for his research career. He culminated this phase with a Doctorate in Materials Physics from USTHB, where his doctoral work explored the optical and structural behavior of semiconductor thin films, especially in photovoltaics and gas sensing.

🏢 Professional Endeavors

Dr. Chetoui has held research positions at prestigious Algerian institutions including CDTA and CRTSE, contributing extensively to semiconductor research and device engineering. As a Research Engineer Advisor, he led multiple projects on metallic oxide synthesis, spray pyrolysis device design using SolidWorks, and thin film characterization. His current role at CRTSE involves cutting-edge material synthesis for energy applications. From 2013 to 2014, he also served as an Assistant Teacher at USTHB, mentoring students in electricity and mechanics, showcasing his dedication to both research and education.

🔬 Contributions and Research Focus

Dr. Chetoui’s research revolves around nanostructured semiconductors, luminescent materials, and thin-film deposition techniques. He has made significant contributions to the study of ZnS, ZrO₂, V₂O₅, NiO, and perovskite-based materials through both experimental and DFT (density functional theory) studies. His work integrates photoluminescence, photocatalysis, and nanocomposites for energy conversion and environmental remediation. A key focus of his work is the use of spray pyrolysis, a cost-effective technique for fabricating high-performance thin films for solar energy and sensing applications.

🌍 Impact and Influence

Dr. Chetoui’s research has contributed to the development of nanomaterials with enhanced optical and photocatalytic properties, impacting fields such as renewable energy, environmental cleanup, and nanoelectronics. His collaborative studies on Zn1−xMgxS, SiNx, and rGO-based nanostructures offer valuable insights into material optimization for visible-light-driven photocatalysis. His role in cross-disciplinary teams and international publication record helps bridge theoretical understanding with practical applications. These contributions make him a valuable asset in advancing sustainable nanotechnology in the MENA region and beyond.

📚 Academic Cites

Dr. Chetoui has co-authored over 20 international publications in reputable journals like Applied Physics A, Physica B, Solid State Sciences, and Diamond & Related Materials. His work on photocatalytic nanocomposites, luminescent thin films, and solid-state phosphors has attracted attention in the materials science and semiconductor communities. Notable studies include his 2024 research on ZrV₂O₇ nanoparticles, Eu³⁺-doped phosphors, and graphene-based heterojunctions, contributing to an increasing citation index and strengthening his global scientific footprint.

🧪 Research Skills

Dr. Chetoui has hands-on expertise in spray pyrolysis, solvothermal synthesis, and solid-state reactions. His technical arsenal includes XRD, SEM, AFM, FTIR, and photoluminescence spectroscopy. Adept in software like SolidWorks, he has designed customized deposition systems and analyzed complex materials using optical and structural simulation tools. His research merges materials chemistry, device engineering, and physics, demonstrating analytical precision, instrumental knowledge, and problem-solving ability critical for experimental physics and nanotechnology development.

👨‍🏫 Teaching Experience

As an Assistant Teacher at USTHB, Dr. Chetoui taught physics tutorials in electricity and mechanics, demonstrating strong pedagogical skills. His teaching involved hands-on lab supervision, conceptual instruction, and assessment design, providing foundational physics knowledge to undergraduate students. His bilingual fluency in French and English further enhances his communication in diverse academic settings. He is well-prepared to deliver graduate-level lectures on semiconductors, thin film physics, and optical materials, making him a valuable educator and mentor in higher education.

🏅 Awards and Honors

While explicit awards are not listed, Dr. Chetoui’s academic journey through international institutions, his research output, and consistent participation in scientific events demonstrate high merit and recognition in his field. Presenting at over 10 national and international conferences, including ICASE, EMS, and ICMS, he has contributed valuable insights on ZnS-based nanomaterials, luminescent oxides, and environmental applications of nanotechnology. His selection to present at these forums reflects peer acknowledgment and research credibility in applied materials science.

🌟 Legacy and Future Contributions

Dr. Chetoui’s work positions him to make impactful contributions to next-generation nanomaterials for energy harvesting, environmental monitoring, and photonics. He is expected to lead collaborative research, initiate international projects, and expand into emerging materials platforms like 2D materials and hybrid perovskites. With a commitment to sustainable innovation and scientific mentorship, he is poised to leave a lasting legacy in applied physics and nanotechnology. His future efforts will likely strengthen the scientific community’s ability to tackle climate, energy, and material efficiency challenges.

Publications Top Notes


Band Structure Engineering in InVO₄/g-C₃N₄/V₂O₅ Heterojunctions for Enhanced Type II and Z-Scheme Charge Transfer

  • Authors: Abdelmounaim Chetoui, Ilyas Belkhettab, Amal Elfiad, Ismail Bencherifa, Messai Youcef
    Journal: Vacuum
    Year: 2025

Effect of Li⁺ Co-doping on Structural, Morphological and Photoluminescence Spectroscopy of ZnO: Eu³⁺ Nanocrystal Powders

  • Authors: Wafia Zermane, Lakhdar Guerbous, Widad Bekhti, Ahmed Rafik Touil, Mohamed Taibeche, Abdelmounaim Chetoui, Lyes Benharrat, Nadjib Baadji, Mustapha Lasmi, Abdelmadjid Bouhemadou
    Journal: Ceramics International
    Year: 2025

An In-Depth Photoluminescence Investigation of Charge Carrier Transport in ZrO₂|V₂O₅ Type I Junction: Probing the Production of Hydroxyl Radicals

  • Authors: Abdelmounaim Chetoui, Ilyas Belkhettab, Amal Elfiad, Youcef Messai, Aicha Ziouche, Meftah Tablaoui
    Journal: Applied Surface Science
    Year: 2024

Elaboration and Characterization of Amorphous Silicon Carbide Thin Films (a-SiC) by Sputtering Magnetron Technique for Photoelectrochemical CO₂ Conversion

  • Authors: Abdelmounaim Chetoui
    Journal: Silicon
    Year: 2022

Physicochemical Investigation of Pure Cadmium Hydroxide Cd(OH)₂ and Cd(OH)₂–CdO Composite Material Deposited by Pneumatic Spray Pyrolysis Technique

  • Authors: Abdelmounaim Chetoui
    Journal: Applied Physics A
    Year: 2022

 

Marcin Szczęch | Experimental methods | Excellence in Innovation

Assoc. Prof. Dr. Marcin Szczęch | Experimental methods | Excellence in Innovation

AGH University of Krakow | Poland

Marcin Szczęch is a professor at the AGH University of Krakow in Poland, specializing in the study of magnetic fluids (both magnetorheological and ferrofluid) and their applications, particularly in sealing technology. With an academic career dedicated to exploring fluid dynamics and material science, Szczęch’s work has influenced several engineering fields, contributing both to theoretical studies and practical solutions. His groundbreaking contributions, particularly in magnetic fluid sealing, have earned him a reputation as a leading researcher in his field.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Marcin Szczęch’s academic journey began at the AGH University of Krakow, where he earned both his Bachelor’s and Ph.D. in Mechanical Engineering. His Ph.D. thesis focused on the durability of rotary ferrofluid seals in water environments, setting the foundation for his expertise in magnetic fluid applications. After earning his Doctor of Philosophy in 2014, he further advanced his research by exploring the continuity behavior of liquid rings formed by magnetic liquids, which earned him a post-doctoral degree in 2021.

Professional Endeavors 💼

Since 2011, Szczęch has been a faculty member at the AGH University of Krakow, currently holding the position of Professor at the Faculty of Mechanical Engineering and Robotics. In this role, he has not only continued to drive forward his research on magnetic fluids but also contributed significantly to the academic environment by mentoring over 40 students and supervising doctoral research projects. His main research areas focus on magnetorheological and ferrofluids and their use in various industrial applications, especially for fluid seals, vibration isolators, and lubrication systems.

Contributions and Research Focus 🔬

Marcin Szczęch’s research is primarily focused on magnetic fluids and their practical applications. His work has explored the use of these fluids in various contexts, such as magnetic fluid sealing systems, lubrication systems, and vibration isolators. Some of his most notable projects include the development of the Compact Magnetic Fluid Seal (CMFS) and research into biocompatible coatings for medical applications. He has also worked extensively on magnetic fluid lubricated bearings, contributing to the understanding of how these materials operate under magnetic field conditions.

Impact and Influence 🌍

Marcin Szczęch has made a significant impact in both academia and industry. His published research in prominent journals and his extensive patent portfolio (24 patents granted by the Polish Patent Office) underscores his ability to not only advance the scientific understanding of magnetic fluids but also provide practical solutions for industries such as machine design, materials science, and bioengineering. His multidisciplinary research continues to push the boundaries of engineering, positioning him as a key influencer in the development of innovative fluid dynamics solutions.

Academic Cites and Scholarly Recognition 📚

Szczęch’s scholarly work has earned him a strong reputation, as evidenced by his 52 publications on the AGH BaDAP list and 23 indexed in the Web of Science database. With an H-index of 9, Szczęch’s work has been cited numerous times, indicating its relevance and importance in the academic community. His contributions to magnetic fluid dynamics have gained recognition in a wide array of engineering disciplines, cementing his status as a thought leader in the field.

Research Skills and Expertise ⚙️

Szczęch is proficient in a variety of engineering programs such as SolidWorks, AutoCAD, Matlab, Mathcad, Ansys, and LabVIEW, and is well-versed in operating specialized research equipment like rotational rheometers, particle distribution analyzers, and 3D scanners. His expertise in magnetic fluids, coupled with his command of these advanced tools, allows him to carry out both theoretical and experimental studies that bridge the gap between research and industrial application.

Teaching Experience 📖

As a professor, Szczęch teaches a wide range of courses, including Fundamentals of Machine Construction, Machine Design, Modern Engineering Materials, and Computer-Aided Design. His teaching has positively impacted numerous students, with more than 40 thesis works realized under his supervision. He plays an active role in shaping the next generation of engineers and researchers, fostering a deep understanding of both fundamental principles and practical applications of magnetic fluid technologies.

Awards and Honors 🏆

Marcin Szczęch’s work has been recognized through various grants, patents, and research projects. He has received numerous accolades for his contributions to engineering, particularly in the areas of magnetic fluid sealing systems and lubrication technologies. His 24 patents and participation in several innovative research projects underscore his commitment to pushing the envelope of applied research. Additionally, he has been recognized for his role in supervising and mentoring students, further establishing his credibility as an academic leader.

Legacy and Future Contributions 🌱

Marcin Szczęch’s legacy is shaped by his contributions to magnetic fluid technology, especially in the development of advanced seals, lubricants, and vibration isolators. Looking forward, Szczęch is poised to expand his research into sustainable and eco-friendly applications of magnetic fluids, particularly in the context of green engineering and biotechnology. His future contributions could bridge the gap between advanced materials and sustainability, aligning his work with the growing global focus on environmentally conscious engineering solutions.

Publications Top Notes

Research into the pressure capability and friction torque of a rotary lip seal lubricated by ferrofluid

  • Authors: Marcin Szczęch
    Journal: Journal of Magnetism and Magnetic Materials
    Year: 2025

Analysis of a new type of electric power steering gear with two pinions engaged on the same set of teeth on the rack

  • Authors: Marcin Szczęch, Marcin Nakielski, Jaroslaw Bujak
    Journal: Tribologia: teoria i praktyka
    Year: 2024

Comparative study of models and a new model of ferrofluid viscosity under magnetic fields and various temperatures

  • Authors: Marcin Szczęch, Tarasevych Yuliia
    Journal: Tribologia: teoria i praktyka
    Year: 2024

Research into the properties of magnetic fluids produced by milling technology

  • Authors: Wojciech Horak, Marcin Szczęch
    Journal: Tribologia: teoria i praktyka
    Year: 2024

The influence of printing parameters on leakage and strength of fused deposition modelling 3D printed parts

  • Authors: Marcin Szczęch, Wojciech Sikora
    Journal: Advances in Science and Technology Research Journal
    Year: 2024