Dario Bercioux | Quantum Technologies | Best Researcher Award

Assoc. Prof. Dr. Dario Bercioux | Quantum Technologies | Best Researcher Award

Donostia International Physics Center, Spain

Dr. Dario Bercioux is an Ikerbasque Associate Professor and group leader at the Donostia International Physics Center (DIPC) in Spain. With a specialization in mesoscopic systems, quantum materials, and light-matter interaction, his work spans theoretical and applied condensed matter physics. He has published extensively, contributed to major international collaborations, and held numerous postdoctoral positions across Europe. A fluent speaker of four languages, Dr. Bercioux is also a recognized science communicator, conference organizer, and mentor to young researchers, influencing the next generation of quantum scientists.

Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits

Dr. Bercioux’s academic journey began in Naples, Italy, where he earned his Laurea in Physics (summa cum laude) and Ph.D. from the Federico II University of Naples. His doctoral research, focused on spin-dependent transport in nanostructures, laid the groundwork for his later interest in quantum transport phenomena. Under the guidance of Professors V. Cataudella and V. M. Ramaglia, he developed strong foundations in low-dimensional physics and quantum electronics. His early education reflects exceptional academic performance, including a perfect score in his high school technical diploma.

Professional Endeavors

Over two decades, Dr. Bercioux has held progressively prestigious roles, beginning as a postdoctoral researcher in Germany (Regensburg, Freiburg, Berlin) and culminating in a tenured professorship at DIPC. He joined Ikerbasque in 2014, was promoted to Associate Professor in 2019, and now leads the Mesoscopic Electrons and Photons Systems (MEPS) group. His international collaborations include affiliations with the Université d’Aix-Marseille, Stanford University, and the University of Bordeaux. He’s also an editorial board member of Communication Physics and serves as advisor to the Phenikaa Institute in Vietnam.

Contributions and Research Focus

Dr. Bercioux’s research centers on graphene, spintronics, topological matter, non-Hermitian physics, and quantum simulation. He has contributed to the understanding of chiral edge states, photonic lattices, and pseudo-spin systems, and co-authored high-impact reviews in Review of Modern Physics and Reports on Progress in Physics. His group explores quantum effects in low-dimensional systems, bridging theory and experiment. With over 70 publications, including 18 letters in top-tier journals such as PRL, Nat. Mater., and Commun. Phys., he remains at the forefront of quantum condensed matter research.

Impact and Influence

With over 2,190 citations and an h-index of 23, Dr. Bercioux has significantly influenced the field of condensed matter physics. His work is regularly cited in top-tier journals, and he has delivered 70 invited talks across global institutions. He has organized more than 20 international schools and workshops, such as the renowned Capri Spring School series. He actively shapes scientific discourse as an editor, reviewer, and conference chair, with roles in high-profile review panels and editorial boards. His multidisciplinary collaborations enhance the global understanding of quantum transport and materials.

Academic Cites and Metrics

According to Web of Science (July 2025), Dr. Bercioux’s publication metrics include 70 peer-reviewed papers, over 2,190 citations, and an average of 31 citations per article. He has published in PRL, Nature Nanotech, Nat. Mater., and Advanced Quantum Technology, highlighting the quality and relevance of his work. He’s authored three reviews, three News & Views, and a lecture book for Springer, solidifying his standing as both a scholar and educator. His Research-ID and ORCID maintain up-to-date records of his contributions, evidencing his scientific integrity and productivity.

Research Skills

Dr. Bercioux excels in quantum transport theory, non-Hermitian physics, light-matter coupling, and spin-orbit photonics. His analytical prowess spans tight-binding models, topological classification, and synthetic lattices. He possesses deep expertise in multi-terminal quantum devices, photonic simulations, and Dirac systems. His interdisciplinary skills enable work on quantum materials for computation, superconductivity, and spin textures, contributing to quantum technology development. Skilled in project coordination, he has secured over €900,000 in competitive funding and mentored doctoral candidates, showcasing his ability to translate theoretical insight into impactful research outputs.

Teaching Experience

Dr. Bercioux has mentored 7 Ph.D. students and 11 undergraduates, guiding theses in mesoscopic physics, quantum transport, and topological systems. His teaching philosophy emphasizes foundational understanding and research readiness, often combining coursework with hands-on research. He’s organized and lectured at 18+ international physics schools, including the Capri Spring School, and hosted workshops on quantum materials. As a Privatdozent at Freiburg and later ASN-certified associate professor in Italy, his academic credentials enable him to teach across European institutions, enriching the physics curriculum with cutting-edge topics.

Awards and Honors

Dr. Bercioux has received several prestigious awards, including the Ikerbasque Research Fellowship, the ASN Italian National Qualification, and the Aix-Marseille Excellence Fellowship. He has earned multiple PhD grants, DFG and MINECO project funds, and international workshop sponsorships, reflecting trust from academic funding bodies across Europe and Asia. Recognized for scientific leadership, he serves on expert review panels for NWO, ESF, Romanian Research Council, and others. His work has also attracted support from the Basque Government, positioning him as a key figure in European quantum research.

Legacy and Future Contributions

Dr. Bercioux’s enduring legacy lies in his ability to bridge fundamental theory and real-world applications in quantum technologies. As a mentor, organizer, and collaborator, he is shaping the future of quantum simulations, non-Hermitian systems, and low-dimensional materials. Through his continued involvement in strategic projects like IKUR—Quantum and photonic simulators, he fosters innovation at the intersection of light and matter. His ongoing efforts in science diplomacy, editorial duties, and workshop leadership ensure that his influence will extend across generations, advancing both knowledge and mentorship in quantum physics.

Publications Top Notes


Colloquium: Synthetic quantum matter in nonstandard geometries

  • Authors: T. Grass, D. Bercioux, U. Bhattacharya, M. Lewenstein, H.-S. Nguyen, …
    Journal: Reviews of Modern Physics 97 (1), 011001
    Year: 2025

Wannier center spectroscopy to identify boundary-obstructed topological insulators

  • Authors: R.A.M. Ligthart, M.A.J. Herrera, A.C.H. Visser, A. Vlasblom, D. Bercioux, I. Swart
    Journal: Physical Review Research 7 (1), 012076
    Year: 2025

Correction to Topological Properties of a Non-Hermitian Quasi-1D Chain with a Flat Band

  • Authors: C. Martínez-Strasser, M.A.J. Herrera, A. García-Etxarri, G. Palumbo, F.K. Kunst, D. Bercioux
    Journal: Advanced Quantum Technologies 8 (3)
    Year: 2025

Chiral spin channels in curved graphene pn junctions

  • Authors: D. Bercioux, D. Frustaglia, A. De Martino
    Journal: Physical Review B 108 (11), 115140
    Year: 2023

Implementation and characterization of the dice lattice in the electron quantum simulator

  • Authors: C. Tassi, D. Bercioux
    Journal: Advanced Physics Research 3 (9), 2400038
    Year: 2024

 

 

Faustino WAHAIA | Quantum Physics | Best Researcher Award

Dr. Faustino WAHAIA | Quantum Physics | Best Researcher Award

Millennium Institte for Research in Optics (MIRO), Institute of Physics , ANID and PUC | Chile

Dr. Faustino Wahaia is a distinguished researcher and academic professional in the fields of lasers, quantum optics, and terahertz (THz) photonics. He is currently affiliated with the Institute of Physics at Pontificia Universidad Católica de Chile as part of the Millennium Institute for Research in Optics (MIRO). His research has had a significant impact in the realms of biomedical applications, nanomaterials characterization, and advanced laser technologies. Faustino’s multidisciplinary expertise integrates lasers, ultrafast systems, and photonics, contributing to both theoretical and practical advancements.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 📚

Dr. Wahaia’s academic journey has been remarkable, marked by a robust educational foundation across multiple international institutions. He earned his Ph.D. in Engineering Physics from the University of Porto in Portugal, with his dissertation focusing on spectroscopic and imaging techniques using the terahertz frequency band for biomedical applications. His pursuit of knowledge began with an MSc in Physics Engineering from the University of Lisbon – IST, where he specialized in the diagnostic and control of terawatt laser systems. Faustino’s academic journey expanded further through his research at University of Sofia and the Center for Physical Sciences and Technology in Vilnius, Lithuania. His early academic pursuits laid the groundwork for his cutting-edge research in THz photonics and quantum optics.

Professional Endeavors 🏢

Throughout his career, Dr. Wahaia has held prestigious positions at various research institutes across the globe. He has contributed significantly to the Institute for Nanotechnology and Nano-Sciences in Porto, Portugal, and Center for Physical Sciences and Technology in Vilnius, Lithuania. His work has focused on developing and characterizing ultrashort pulse lasers, THz spectroscopic systems, and biomedical imaging technologies. His role in the Institute for Research and Innovation in Health (i3S) reflects his commitment to applying his scientific expertise to real-world problems in biomedical science, particularly through terahertz techniques for nanomaterials and biomedical studies.

Contributions and Research Focus 🔬

Dr. Wahaia’s research spans several cutting-edge technologies, such as ultrafast lasers, THz communications, and spectroscopic techniques like Raman spectroscopy and ellipsometry. His work in terahertz photonics for biomedical applications, hazardous residue detection, and pharmaceutical quality assessment has had substantial contributions to fields such as materials science, food safety, and security. Additionally, Faustino has delved deeply into quantum optics, advancing the understanding of laser-matter interactions, plasma physics, and spectral selection devices.

Impact and Influence 🌍

Dr. Wahaia’s work has influenced several scientific and industrial domains, notably in biomedical diagnostics, photonics-based security systems, and advanced materials research. His terahertz imaging systems and laser-based technologies have been groundbreaking in medical imaging and nanomaterials characterization. Faustino’s contributions to nanotechnology and THz photonics have significantly shaped the research landscape in these areas. Through his involvement with international organizations and his role in the Millennium Institute for Research in Optics (MIRO), his influence extends globally, positioning him as a key leader in optical and quantum sciences.

Academic Cites 📊

Dr. Wahaia’s research is widely recognized, with numerous citations in highly regarded journals, particularly in optics, quantum photonics, and terahertz science. His peer-reviewed publications in journals such as Frontiers in Physics, Sensors, and MDPI highlight the impact of his contributions to lasers and photonics technologies. Additionally, Faustino has been instrumental in editing influential books such as “Ellipsometry: Principles and Techniques for Materials Characterization” and “Quantum Electronics”, which have further solidified his standing in the scientific community.

Research Skills 💡

Dr. Wahaia possesses a broad range of highly specialized research skills, including:

  • Laser System Design: Expertise in developing terawatt lasers and related technologies.
  • Terahertz Spectroscopy: In-depth experience in terahertz wave generation, detection, and characterization.
  • Biomedical Imaging: Significant contributions to Optical Computed Tomography (OCT) and Raman spectroscopy for medical applications.
  • Materials Characterization: Pioneering work in THz photonics for the study of nanomaterials and pharmaceutical quality control.

His technical expertise spans ultrafast lasers, laser-plasma interactions, pulse amplification techniques, and fiber-coupled terahertz systems.

Teaching Experience 🎓

Dr. Wahaia has made substantial contributions to education through his roles as a doctoral adviser and master’s student mentor. He has supervised cutting-edge research in areas like atomic force microscopy and Raman spectroscopy for biomedical applications. He has taught engineering physics at the University of Maputo and radiological physics at the Higher Institute of Health Sciences of Maputo, contributing significantly to the education and development of future scientists in quantum optics and laser technologies.

Awards and Honors 🏅

Throughout his career, Faustino has been recognized with several prestigious awards and fellowships:

  • Ph.D. Fellowship in Physics Engineering focusing on lasers and quantum optics.
  • MSc Fellowship in diagnostics and wavefront control of terawatt lasers.
  • PostDoc Grant in Ultrafast Lasers and THz Photonics, contributing to biomedical and nanomaterial studies.

These honors reflect his academic excellence and his dedication to advancing the fields of optics, photonics, and terahertz science.

Legacy and Future Contributions 🔮

Dr. Faustino Wahaia’s legacy in laser and THz photonics research is set to continue shaping the future of biomedical imaging, nanomaterials research, and photonics-based technologies. As a mentor, his guidance is ensuring that the next generation of scientists will carry forward his contributions. His future work is poised to further advance applications of terahertz waves in security, agriculture, and pharmaceuticals, and to develop new solutions that address global challenges in healthcare and environmental safety.

Publications Top Notes

Optical properties of millimeter-size metal-organic framework single crystals using THz techniques

  • Authors: Faustino Wahaia, Irmantas Kašalynas, Daniil Pashnev, Gintaras Valušis, Andrzej Urbanowicz, Mindaugas Karaliunas, Dinesh Pratap Singh, Sascha Wallentowitz, Birger Seifert
    Journal: Journal of Molecular Structure
    Year: 2025

Terahertz spectroscopy and imaging for gastric cancer diagnosis

  • Authors: Faustino Wahaia, Irmantas Kašalynas, Linas Minkevičius, Catia Carvalho Silva, Andrzej Urbanowicz, Gintaras Valušis
    Journal: Journal of Spectral Imaging
    Year: 2020

Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues

  • Authors: Irmantas Kašalynas, Rimvydas Venckevičius, Linas Minkevičius, Aleksander Sešek, Faustino Wahaia, Vincas Tamošiūnas, Bogdan Voisiat, Dalius Seliuta, Gintaras Valušis, Andrej Švigelj, et al.
    Journal: Sensors
    Year: 2016