Professor Emeritus at Tel Aviv University | Israel
Prof. Lev Vaidman is a globally renowned theoretical physicist whose career spans over four decades of pioneering contributions to the foundations of quantum mechanics. Holding the prestigious Alex Maguy-Glass Chair in Physics of Complex Systems at Tel Aviv University, he is best known for his work on quantum measurement theory, the Many-Worlds Interpretation (MWI), and weak values, many of which have translated into experimental realizations that have reshaped our understanding of quantum reality.
Prof. Vaidman’s academic journey began with a B.Sc. in Mathematics and Physics from the Hebrew University in 1977. He then earned his M.Sc. in Physics from the Weizmann Institute (1982), followed by a Ph.D. in Physics from Tel Aviv University in 1987. These formative years laid the groundwork for his lifelong quest to explore and demystify the quantum realm through a uniquely philosophical and mathematical lens.
👨🏫 Professional Endeavors
His professional trajectory is deeply tied to Tel Aviv University, where he rose through the ranks from Senior Research Associate (1990–1995) to Full Professor (2005–2024), and currently serves as Professor Emeritus. Between 1987 and 1990, he was a Visiting Professor at the University of South Carolina, adding international experience early in his career.
🔍 Contributions and Research Focus
Prof. Lev Vaidman has made several groundbreaking contributions to quantum mechanics, many of which have been experimentally realized. Notable among these are the concepts of weak values (1988), the Elitzur-Vaidman interaction-free measurements (1993), and counterfactual communication (2019). He also introduced ideas like quantum gambling and quantum teleportation using continuous variables. His research is deeply rooted in the foundations and interpretation of quantum mechanics, addressing profound questions in quantum measurement theory and exploring the rich interplay between physics and philosophy, particularly through the lens of the Many-Worlds Interpretation and nonlocal phenomena.
🌍 Impact and Influence
Vaidman’s influence extends across physics, mathematics, and philosophy. His work has inspired dozens of experiments worldwide and continues to shape modern approaches to quantum information science. He has been instrumental in expanding the discourse on the Many-Worlds Interpretation, even chairing the 2022 international conference on the subject in Tel Aviv. His impact also includes creating and moderating the quant-ph section on arXiv.org since 1994, fostering a global platform for quantum research dissemination.
📚 Academic Citations
Prof. Vaidman’s publications are widely cited in high-impact journals, and many of his papers are considered essential readings in quantum foundations. He is the Chief Editor of Quantum Reports (MDPI) and Managing Editor of Quantum Studies: Mathematics and Foundations (Springer), further influencing the field’s scholarly direction.
🧠 Research Skills
Prof. Vaidman possesses exceptional analytical skills, marked by original theoretical innovation, precision in mathematical modeling, and a keen philosophical intuition. His ability to formulate testable proposals from abstract principles reflects a rare combination of conceptual clarity and physical insight.
👩🎓 Teaching and Mentorship Experience
With decades of experience as a professor, Prof. Vaidman has supervised 16 MSc students, 7 PhD students, and 4 postdoctoral fellows. Notably, seven of his mentees hold permanent academic positions, in institutions like Hebrew University, Cambridge University, and Chapman University. His mentorship has helped shape future leaders in physics and philosophy of science.
🏅 Awards and Honors
Prof. Lev Vaidman’s distinguished career has been celebrated with numerous prestigious honors that underscore his global impact in quantum science. He was elected a Fellow of the Israeli Physics Society in 2024 and awarded the Bristol Benjamin Meaker Distinguished Visiting Professorship the same year. He has held visiting professorships at leading institutions including University College London, LMU Munich, and Chapman University. As a Charter Honorary Fellow of the John Bell Institute, he is recognized for foundational work in quantum mechanics. Additionally, he has secured multiple competitive international grants, further affirming his scholarly excellence and international leadership.
🔮 Legacy and Future Contributions
Now serving as Professor Emeritus, Prof. Vaidman remains actively engaged in research and academic discourse. His participation in upcoming international symposia—such as the 2025 Chapman University event on 100 Years of Quantum Foundations—demonstrates his enduring commitment to advancing our understanding of quantum reality. His legacy lies not only in his theoretical contributions but also in the global network of scholars he has mentored and inspired.
Publications Top Notes
Probability of Self-Location in the Framework of the Many-Worlds Interpretation
Authors: Lev Vaidman Journal:Entropy Year: 2025
The Many-Worlds Interpretation of Quantum Mechanics: Current Status and Relation to Other Interpretations
Authors: Lev Vaidman Journal:Quantum Reports Year: 2024
Photons are lying about where they have been, again
Authors: Gregory Reznik, Carlotta Versmold, Jan Dziewior, Florian Huber, Shrobona Bagchi, Harald Weinfurter, Justin Dressel, Lev Vaidman Journal:Physics Letters A Year: 2023
Why the Many-Worlds Interpretation?
Authors: Lev Vaidman Journal:Quantum Reports Year: 2022
Three approaches for analyzing the counterfactuality of counterfactual protocols
Authors: Alon Wander, Eliahu Cohen, Lev Vaidman Journal:Physical Review A Year: 2021
Institute of Physical Science and Information Technology, Anhui University | China
Dr. Hua Zhang is an accomplished materials scientist and researcher with a deep specialization in perovskite solar cells, currently making significant contributions to the advancement of photovoltaic technology. With over a decade of academic training and an exceptional portfolio of high-impact publications, Dr. Zhang has emerged as a leading figure in sustainable energy research.
Dr. Zhang began his academic journey with a Bachelor of Science in Chemistry from Henan Normal University (2006–2010), followed by a Master’s degree in Organic Chemistry from Huazhong Normal University (2010–2013). He then earned a Ph.D. in Optical Engineering from Huazhong University of Science and Technology (2013–2016), where he began refining his expertise in materials and optoelectronic devices. His interdisciplinary background has uniquely positioned him to tackle complex challenges in solar energy.
🧪 Professional Endeavors
Dr. Zhang has held postdoctoral and research roles in internationally collaborative environments, working with globally recognized scholars such as Alex K.-Y. Jen and Michael Grätzel. His career has been marked by a progressive trajectory of innovation, leadership, and research excellence in cutting-edge solar technologies.
🔬 Contributions and Research Focus
Dr. Zhang’s research revolves around advanced materials for perovskite solar cells, particularly focusing on inverted device architectures, interface engineering, and lead leakage prevention. He has pioneered the use of novel materials like CuCrO₂ nanocrystals, BiOBr flakes, and superhydrophobic surfaces to enhance the efficiency, stability, and safety of solar cells. His work has addressed some of the most critical bottlenecks in photovoltaic research, such as nonradiative recombination, interface degradation, and toxic material containment, offering practical solutions for real-world deployment.
🌍 Impact and Influence
With 11 peer-reviewed publications, many of which are featured in top-tier journals like Advanced Materials, ACS Energy Letters, and Journal of Materials Chemistry A, Dr. Zhang’s research has not only contributed to academic knowledge but also holds the potential for industrial application and commercialization. Several of his papers have been marked as JMCA Hot Papers, signifying their scientific importance and readership impact.
📊 Academic Citations and Recognition
Dr. Zhang’s works have been highly cited, reflecting their influence on the scientific community. He has consistently published as first author and corresponding author, showcasing his role as a key driver of innovation in his research collaborations. His articles are often referenced in subsequent high-impact studies, underlining his thought leadership in the domain.
🛠️ Research Skills
Dr. Zhang possesses advanced skills in materials synthesis, device fabrication, surface engineering, and photovoltaic performance analysis. His technical toolkit includes experience with low-temperature solution processing, interface modification, and characterization techniques essential for next-generation solar cell development.
👨🏫 Teaching and Mentorship Experience
While the current profile does not detail formal teaching positions, Dr. Zhang’s first-author contributions and research leadership suggest active involvement in mentoring junior researchers, guiding lab activities, and contributing to academic training in collaborative research settings.
🧭 Legacy and Future Contributions
Looking forward, Dr. Zhang is poised to become a trailblazer in renewable energy technologies, with ongoing contributions expected to push the boundaries of green energy solutions. His work addresses global challenges in energy sustainability, environmental safety, and materials efficiency, ensuring a legacy that transcends academia and impacts industry and society. His research trajectory suggests continued breakthroughs in interface science, eco-friendly solar cell development, and energy materials, making him a strong candidate for leadership roles, global recognition, and future awards in scientific innovation.
Publications Top Notes
Colloidal Self‐Assembly of CuCrO₂ Nanocrystals for Durable Inverted Perovskite Solar Cells
Authors: Hua Zhang, Rong Wang, Zhixiu Zhao, Jianfei Liang, Chunlin Zhu, Hongyang Liu, Huan Wang Journal: Small Year: 2025
Strengthened cathode interface using an ultrathin 2D ferroelectric semiconductor for inverted perovskite solar cells
Authors: Hua Zhang, Weihong Liu, Yongping Bao, Rong Wang, Jianfei Liang, Lei Wan, Huan Wang Journal: Journal of Materials Chemistry A Year: 2024
Overcoming C60-Induced Nonradiative Recombination via Interfacial Embedding of BiOBr Flakes in Inverted Perovskite Solar Cells
Authors: Hua Zhang Journal: ACS Energy Letters Year: 2023
Design of Superhydrophobic Surfaces for Stable Perovskite Solar Cells with Reducing Lead Leakage
Authors: Hua Zhang, Kang Li, Man Sun, Fanglin Wang, Huan Wang, Alex K.-Y. Jen Journal: Advanced Energy Materials Year: 2021
HxMoO₃−y nanobelts: an excellent alternative to carbon electrodes for high performance mesoscopic perovskite solar cells
Authors: Hua Zhang, Huan Wang, Yinglong Yang, Chen Hu, Yang Bai, Teng Zhang, Wei Chen, Shihe Yang Journal: Journal of Materials Chemistry A Year: 2019
E. Poloșan Silviu Pavel is a Senior Researcher I at the National Institute of Materials Physics (NIMP Bucharest-Magurele), with a long-standing career in Condensed Matter Physics, particularly in the fields of optics, spectroscopy, and OLED technology. With over 25 years of experience, his work spans from research assistant to senior researcher, with a notable focus on organometallic compounds and rare-earth ion spectroscopy. His significant contributions in material science and nanotechnology have earned him global recognition.
Pavel’s academic journey began with a Ph.D. in Physics from the prestigious Bucharest University, where he specialized in Optics and Spectroscopy (1995-2002). His foundational education was strengthened during his undergraduate studies, where he earned a Physicist degree from the Faculty of Physics at Bucharest University (1988-1993), focusing on plasma physics, laser spectroscopy, and optics. During his early academic years, he also attended the “Iacob Muresianu” High School in Blaj, excelling in mathematics and physics.
Professional Endeavors 🧑🔬
Since 1993, Pavel has been a dedicated part of NIMP Bucharest-Magurele, where he has held various prestigious roles. Starting as a Research Assistant, he grew into a Senior Researcher responsible for crystal growth and scintillating detector studies. Over the years, he has been heavily involved in organometallic compound synthesis, OLED technology, and magneto-optical spectroscopy of rare-earth ions. His ability to lead and manage international collaborations has propelled his career, from coordinating 9 national and international projects to collaborating with high-level research institutes like ENEA Frascati Rome and Universität Roma Tre.
Contributions and Research Focus 🔬
Pavel’s research contributions cover a broad spectrum of materials science and condensed matter physics. He has extensively studied organometallic compounds for OLED applications, magneto-optical properties of rare-earth ions, and ferromagnetic materials. His work on amorphous and polycrystalline Bi4Ge3O12 materials has led to important insights into optical properties, structural changes, and energy absorption dynamics. Additionally, his studies on metallic nanoparticles and nanoclusters in alkali halide crystals have significantly advanced our understanding of nanomaterials.
Impact and Influence 🌍
Pavel’s research has had a notable global impact, as demonstrated by his 67 scientific papers (including 38 as the corresponding author) and 263 citations in leading journals. His contributions have shaped the fields of OLED technology and material characterization. Pavel’s involvement in international collaborations has enhanced the visibility and reach of his work, helping to shape the future of advanced material applications. His role as a supervisor for PhD theses has allowed him to pass on his knowledge, mentoring future leaders in materials science.
Research Skills 🔧
Pavel is a highly skilled researcher in areas such as:
Synthesis and characterization of organometallic compounds for OLED applications
Spectroscopic analysis of rare-earth doped materials
Magneto-optical studies of materials
Synthesis of metallic nanoclusters and nanoparticles
Crystal growth techniques for scintillating materials His deep understanding of these areas enables him to bridge theoretical and experimental approaches, driving innovative solutions in material science.
Teaching Experience 🧑🏫
As an academic supervisor, Pavel has guided PhD students on projects ranging from semiconducting organic materials to polymeric nanocomposites. He has imparted knowledge in both material synthesis and optical characterization techniques, contributing to the professional growth of students. His involvement in international research collaborations also allows him to teach students the importance of global scientific cooperation.
Awards and Honors 🏆
Pavel’s scientific achievements have earned him several prestigious awards, including the Academy Prize “Dragomir Hurmuzescu” for Physics in 2000. This award recognized his work on point defects and metallic nanoparticles in KCl crystals. Pavel has also earned recognition from international institutes, having received support for several high-impact research projects, including collaborations with ENEA Frascati and Romanian-Japan projects. His career is a testament to his outstanding contributions to science.
Legacy and Future Contributions 🌱
Pavel’s legacy is firmly established in materials science and condensed matter physics. His work on OLED technologies, organometallic compounds, and advanced spectroscopy continues to inspire future research in these areas. As a supervisor and project leader, he has cultivated a strong foundation for future generations of scientists to build upon. Moving forward, Pavel aims to expand his research into interdisciplinary areas such as nanotechnology and bioengineering, further enhancing the impact of his work on global technological advancements.
Publications Top Notes
Phase Transitions in Dimer/Layered Sb-Based Hybrid Halide Perovskites: An In-Depth Analysis of Structural and Spectroscopic Properties
Authors: I.C. Ciobotaru, Iulia Corina; C.C. Ciobotaru, Constantin Claudiu; C.M. Bartha, Cristina M.; S. Poloșan, Silviu; C. Beșleagă, Cristina
Journal: Advanced Optical Materials
Year: 2025
Versatile techniques based on the Thermionic Vacuum Arc (TVA) and laser-induced TVA methods for Mg/Mg:X thin films deposition – A review
Authors: R. Vlǎdoiu, Rodica; A. Mandeș, Aurelia; V. Dinca, Virginia; C.C. Ciobotaru, Constantin Claudiu; S. Poloșan, Silviu
Journal: Journal of Magnesium and Alloys
Year: 2024
Structural and magneto-optical investigations of citrate sol–gel derived barium hexaferrite nanocrystalline powder
Authors: M. Secu, Mihail; C.E. Secu, Corina Elisabeta; E. Matei, Elena; C. Radu, Cristian; S. Poloșan, Silviu
Journal: Journal of Alloys and Compounds
Year: 2024
Microstructural and Morphological Characterization of the Cobalt-Nickel Thin Films Deposited by the Laser-Induced Thermionic Vacuum Arc Method
Authors: V. Dinca, Virginia; A. Mandeș, Aurelia; R. Vlǎdoiu, Rodica; V. Ciupinǎ, Victor; S. Poloșan, Silviu
Journal: Coatings
Year: 2023
Organic Light-Emitting Diodes with Electrospun Electrodes for Double-Side Emissions
Authors: I.C. Ciobotaru, Iulia Corina; M.M. Enculescu, Monica Maria; S. Poloșan, Silviu; I. Enculescu, Ionuţ; C.C. Ciobotaru, Constantin Claudiu