Hao Li | Quantum Technologies | Best Researcher Award

Prof. Hao Li | Quantum Technologies | Best Researcher Award

Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences (SIMIT, CAS) | China

Professor Hao Li is a Professor at the Shanghai Institute of Microsystem and Information Technology (SIMIT) under the Chinese Academy of Sciences (CAS). With a long-standing commitment to research in superconducting single-photon detection technology, he has made remarkable contributions to the fields of quantum information technology and weak light detection. Professor Li’s work has set new benchmarks in high-efficiency superconducting single-photon detectors (SSPDs), pushing the boundaries of quantum technologies and influencing scientific advancements globally.

👨‍🎓Profile

Early Academic Pursuits 🎓

Professor Li’s academic journey began with a deep interest in photonics and quantum technologies. Early on, he focused on understanding the fundamental challenges in photon detection. Through years of rigorous study, he honed his expertise in superconductivity and its application to optical sciences. His initial academic pursuits laid the foundation for his later work in superconducting detectors.

Professional Endeavors 💼

Throughout his career, Professor Li has worked closely with various renowned institutions, including Tsinghua University and the University of Science and Technology of China. These collaborations have allowed him to advance his research in fiber-optic quantum key distribution and photonic quantum computing. His professional endeavors have positioned him as a global leader in the field of quantum detection technologies.

Contributions and Research Focus 🔬

Professor Li’s key research focus is on the development of superconducting single-photon detectors (SSPDs), which are integral for advancing quantum communication, quantum computing, and high-precision light detection. His efforts in optimizing optical absorption and photon response in SSPDs have led to the development of near-unity efficiency detectors, solving complex challenges in photon detection. This has paved the way for applications in quantum information technology and weak light detection.

Impact and Influence 🌍

Professor Li’s research has had a profound global impact. His achievements in developing high-efficiency SSPDs have set new standards in quantum key distribution and quantum computing, rewriting world records multiple times. In addition, his contributions have enhanced China’s influence in the international quantum research community and brought about significant social benefits. His work continues to inspire scientists and engineers around the world.

Academic Citations 📚

Professor Li’s work has been widely recognized and cited in prominent journals and conferences. His innovative research in photon detection technology has been acknowledged by organizations such as the Optical Society of America (OSA). The recognition he received in 2020 for his high-efficiency SSPDs exemplifies the academic impact of his work, making him one of the most cited researchers in the field.

Research Skills 🧠

Professor Li possesses a strong command of several key research skills essential to his work, including:

  • Superconductivity and photonics
  • Quantum technology applications
  • Device optimization for high-efficiency photon detection
  • Collaboration with international institutions in advanced fields such as quantum computing His methodical approach to solving multi-dimensional challenges in photon detection technology has played a significant role in his success.

Awards and Honors 🏅

Professor Li has received several prestigious awards, including:

  • Recognition by the Optical Society of America (OSA) in 2020 for his high-efficiency superconducting single-photon detectors.
  • Multiple international accolades for his role in advancing quantum key distribution and quantum computing. These honors highlight his outstanding contributions to the field of quantum technologies and photon detection.

Legacy and Future Contributions 🌱

Professor Li’s legacy is already evident in his groundbreaking work on superconducting single-photon detectors, which have revolutionized quantum detection technologies. Moving forward, his work will likely continue to shape the evolution of quantum computing, communication systems, and weak light detection. His ongoing research promises to drive further advancements in the scalability and integration of quantum systems into practical, real-world applications, cementing his status as a visionary in the field.

Publications Top Notes

Impact of Distributed Bragg Reflectors on the Intrinsic Detection Efficiency of Superconducting Nanowire Single-Photon Detectors

  • Authors: Hongxin Xu, Hailong Han, You Xiao, Jiamin Xiong, Chaomeng Ding, Zhiyun Shu, Yuchi Li, Xiaoyu Liu, Lixing You, Zhen Wang, Hao Li
    Journal: Superconductivity
    Year: 2025

High Performance Superconducting Nanowire Single Photon Detectors for QKD Applications

  • Authors: C. Bruscino, P. Ercolano, D. Salvoni, M. Di Giancamillo, C. Zhang, M. Ejrnaes, H. Li, L. You, L. Parlato, M. Martinelli, et al.
    Journal: IEEE Transactions on Applied Superconductivity
    Year: 2024

Reduction of g²(0) Value in Heralded Spontaneous Parametric Down-Conversion Sources Using Photon Number Resolving Detectors

  • Authors: C. Bruscino, M. Ejrnaes, P. Ercolano, D. Salvoni, C. Zhang, Li, H., You, L., Parlato, L., Pepe, G.P.
    Journal: Low Temperature Physics
    Year: 2024

Single-Shot Readout of a Nuclear Spin in Silicon Carbide

  • Authors: Lai, X.-Y., Fang, R.-Z., Li, T., Su, R.-Z., Huang, J., Li, H., You, L.-X., Bao, X.-H., Pan, J.-W.
    Journal: arXiv
    Year: 2024

Superconducting PNR Detector for Photon Sources Characterization

  • Authors: Pasquale Ercolano, Daniela Salvoni, Ciro Bruscino, Matteo Di Giancamillo, Chengjun Zhang, Mikkel Ejrnaes, Jia Huang, Hao Li, Lixing You, Loredana Parlato, et al.
    Journal: IEEE Transactions on Applied Superconductivity
    Year: 2024

Harshita Srivastava | Quantum Computing | Best Researcher Award

Ms. Harshita Srivastava | Quantum Computing | Best Researcher Award

Deen Dayal Upadhyaya Gorakhpur University | India

Harshita Srivastava is an accomplished Ph.D. researcher currently pursuing her doctoral studies on Computational Studies of Novel Superalkali Clusters at D.D.U.G.U Gorakhpur. With a robust academic background in Physics and Mathematics, Harshita has made significant strides in computational chemistry and material science, focusing on superalkali clusters and their applications in areas like energy storage, drug design, and carbon dioxide activation.

👨‍🎓Profile

Scopus

Early Academic Pursuits 🎓

Harshita’s academic journey began in the Science Group at the CBSE Board, where she graduated from high school in 2012 and later completed her Intermediate studies in Mathematics in 2014. She earned her B.Sc. in Physics and Mathematics from D.D.U.G.U Gorakhpur in 2017, followed by a Master’s degree in Physics in 2019. Her keen interest in computational studies led her to pursue Ph.D. research at the same institution, where she continues to delve into the world of superalkali clusters.

Professional Endeavors 🔬

Throughout her career, Harshita has demonstrated a commitment to advancing scientific knowledge and contributing to the field of computational chemistry. Her research experience spans a wide array of topics, from superalkalis to the inhibition of SARS-CoV-2, highlighting her ability to apply computational methods to a diverse range of scientific challenges. Her work in understanding the electronic structures of clusters and exploring new materials for applications in energy storage and drug design has established her as an emerging expert in her field.

Contributions and Research Focus 🔍

Harshita’s research is centered around the study of superalkali clusters and their chemical properties, which has implications for a variety of applications. She has contributed to significant publications in top-tier journals like Frontiers in Physics, Chemical Physics Letters, and Journal of the Indian Chemical Society. Her work also extends to material science, specifically studying molecular dynamics, quantum chemistry, and their potential applications in sustainable development. By investigating the interaction of molecules with superalkalis, Harshita has helped to enhance our understanding of nonlinear optical responses, hydrogen storage, and energy-efficient materials.

Impact and Influence 🌍

Harshita’s research is influencing the scientific community, particularly in the realms of superalkalis and nanomaterials. Her work has applications in carbon dioxide activation, hydrogen storage, and the design of strong bases and superbases, which could significantly contribute to addressing global energy and environmental challenges. Additionally, her book chapter contributions on superalkalis, which were published by Taylor & Francis/CRC Press, further demonstrate her scientific influence and commitment to advancing knowledge in her field.

Research Skills 🔧

Harshita possesses advanced research skills, particularly in computational modeling, ab initio studies, and quantum chemical simulations. She is proficient in using a variety of simulation tools such as the Amsterdam Modelling Suite and has experience in docking studies and molecular dynamics simulations. These skills have enabled her to tackle complex scientific problems and make meaningful contributions to the study of novel materials and superalkali chemistry. Her expertise in data analysis and theoretical modeling also positions her as a leader in her research area.

Awards and Honors 🏆

While Harshita is still in the early stages of her career, she has already received significant recognition for her work. Her participation and presentation at conferences such as the International Conference on Nanotechnology and Materials for Energy & Sustainable Development have been well-received. She has also been acknowledged for her contributions to research with certificates and awards from renowned institutions, showcasing her growing reputation in the scientific world.

Legacy and Future Contributions 🔮

Harshita Srivastava’s future in research is bright. With her ongoing work in computational chemistry and superalkali clusters, she is poised to make even more significant contributions to material science, nanotechnology, and sustainability. As she continues to expand her research portfolio, Harshita has the potential to leave a lasting legacy in the scientific community, driving innovations in clean energy, drug design, and environmental solutions. Her work has already laid the foundation for future breakthroughs, and her career is one to watch closely as she continues to push the boundaries of scientific understanding.

Publications Top Notes

BH6+: Revisiting borohydride cation with negatively charged boron and its possible implications for hydrogen storage

  • Authors: Srivastava, A.K., Das, P., Srivastava, H., Chattaraj, P.K.
    Journal: Chemical Physics, 2024

Interaction of N2, O2 and H2 Molecules with Superalkalis

  • Authors: Srivastava, H., Kumar Srivastava, A., Misra, N.
    Journal: ChemistryOpen, 2024

Engineering novel alkalides with superalkali clusters: Ab initio insights into nonlinear optical responses

  • Authors: Srivastava, H., Srivastava, A.K.
    Journal: Molecular Simulation, 2024

Superalkalis in the Design of Strong Bases and Superbases

  • Authors: Srivastava, H., Srivastava, A.K.
    Book Title: Superhalogens and Superalkalis: Bonding, Reactivity, Dynamics and Applications, 2024

Effect of Methyl Substitutions on the Ionization Energy of OH3−n(CH3)n+

  • Authors: Srivastava, H., Tripathi, J.K., Srivastava, A.K.
    Book Title: Springer Proceedings in Materials, 2024

 

 

 

Moteb Alqahtani | Quantum Information | Best Researcher Award

Dr. Moteb Alqahtani | Quantum Information | Best Researcher Award

King Khalid University | Saudi Arabia

Dr. Moteb Mojeb G. Alqahtani is an Associate Professor of Physics at King Khalid University (KKU) in Abha, Saudi Arabia. With a PhD from Sussex University (UK) and a MSc from the University of New South Wales (Australia), his academic journey is marked by a deep commitment to the advancement of quantum physics. His teaching and research expertise centers around atom-light interactions, quantum information processing, and quantum optics, making him a leading figure in his field. Throughout his career, he has demonstrated both academic excellence and leadership in various university roles.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 🎓

Dr. Alqahtani’s academic journey began at King Khalid University, where he earned his BSc in Physics in 2004. His curiosity and passion for the field led him to pursue graduate studies at the University of New South Wales in Sydney, Australia, where he obtained his MSc in Physics in 2009. Building upon this foundation, he completed his PhD in Physics at Sussex University in 2014. His PhD thesis, titled “Multi-photon Processes in Cavity QED”, laid the groundwork for his future contributions to quantum optics and quantum information theory.

Professional Endeavors 🔬

Dr. Alqahtani’s professional journey includes diverse roles in both teaching and administration. He began as a Teaching Assistant at KKU in 2004, progressing through roles as Assistant Professor (2015–2020) and then Associate Professor in 2020. He has also demonstrated leadership as the Head of the Physics Department multiple times and as the Research Center Director at KKU. His expertise has extended to serving as Vice Dean in several capacities, including Vice Dean of Graduate Studies. His administrative roles underscore his commitment to enhancing both academic quality and research culture at KKU.

Contributions and Research Focus 🔍

Dr. Alqahtani’s research focus centers on the intersection of quantum optics, cavity quantum electrodynamics (QED), and quantum information processing. His work on atom-light interactions and multi-photon processes has advanced the understanding of quantum gates, quantum computation, and quantum coherence. His research also explores quantum optics in hybrid systems, such as metal nanoparticles, graphene nanodisks, and quantum dots, which have important implications for future technologies in quantum communication and quantum computing.

Impact and Influence 🌍

Dr. Alqahtani’s work has had a significant impact on both academic research and practical applications in quantum technology. His publications in leading journals like Quantum Information Processing and Nanomaterials have contributed to expanding knowledge in areas such as quantum phase gates, quantum information theory, and quantum optics. His research is highly regarded by the scientific community and is regularly cited in works on quantum computing and quantum communication. His leadership roles at KKU, particularly as Research Center Director and Vice Dean, have allowed him to shape the university’s research environment, fostering collaboration and innovation. As an academic mentor, he has guided numerous students through their research projects and theses, impacting the next generation of physicists.

Academic Cites 📚

Dr. Alqahtani has established himself as a leading figure in quantum optics and quantum information. His research has been widely cited across various high-impact journals, attesting to the relevance and importance of his work. Key papers include his publications on quantum gates, multi-photon processes in cavity QED, and optical multistability in hybrid systems, with a growing citation record reflecting his ongoing influence in the field.

Research Skills 🛠️

Dr. Alqahtani possesses a broad range of research skills that make him an expert in quantum mechanics, quantum computation, and quantum optics. He is skilled in mathematical modeling, simulation techniques, and the application of advanced quantum theories to real-world systems. His work involves a deep understanding of atom-light interactions and quantum coherence, which he applies to the development of quantum gates and other quantum technologies.

Teaching Experience 👨‍🏫

Dr. Alqahtani has extensive teaching experience at both the undergraduate and graduate levels. He has taught a wide range of courses, including Quantum Mechanics, Quantum Optics, Light and Lasers, and Modern Physics. His diverse teaching portfolio reflects his deep knowledge of both theoretical and experimental physics. His teaching philosophy emphasizes active learning, critical thinking, and the importance of research-oriented education, preparing students for both academic and professional success in the field of physics.

Legacy and Future Contributions 🔮

As Dr. Alqahtani continues to advance his research in the field of quantum optics and quantum information processing, his legacy is being solidified through both his research publications and his leadership in academia. His work is at the forefront of quantum computation and quantum communication, areas with immense potential for future technologies. His ongoing research, mentorship, and leadership will continue to influence both the scientific community and the development of cutting-edge technologies.

Publications Top Notes

Tian Luan | Quantum Technologies | Best Researcher Award

Dr. Tian Luan | Quantum Technologies | Best Researcher Award

China Academy of Electronics and Information Technology | China

Dr. Luan Tian is a Senior Engineer at the China Academy of Electronics and Information Technology and an off-campus tutor for doctoral students at Southeast University. He is recognized as a young expert in the field of Quantum Information within the China Electronics Technology Group Corporation. Luan Tian currently holds the position of Operation Director in charge of scientific research at the Yangtze River Delta Industrial Innovation Center of Quantum Technology. He is regarded as an outstanding youth of China Electronics Technology and a leading talent in Suzhou innovation.

👨‍🎓 Profile

Scopus

Orcid

Early Academic Pursuits 🎓

Luan Tian’s academic journey began with a strong foundation in quantum physics and information technology, paving the way for his future in the Quantum Information field. His educational background equipped him with the critical skills to contribute to cutting-edge advancements in technology. As an off-campus tutor at Southeast University, Luan plays a key role in guiding and mentoring the next generation of scientists and engineers in Quantum Computing.

Professional Endeavors 🏆

Dr. Luan Tian’s professional career spans multiple high-level roles, including leadership positions in research and development and industrial innovation. He has successfully led major tasks and projects funded by the China Electronics Science and Technology Development Fund, bringing forward revolutionary advancements in Quantum Computing. His leadership has been pivotal in the development of China’s first fully autonomous 20-bit superconducting Quantum computer and in shaping the industrial chain for superconducting Quantum technologies domestically.

Contributions and Research Focus 🔬

Dr. Luan Tian’s research focus lies in the realm of Quantum Information and Quantum Computing, particularly in the development of superconducting quantum computers. He has made substantial contributions by spearheading projects that resulted in the successful creation of a 20-bit fully autonomous superconducting quantum computer. His work in the industrialization of quantum technologies, especially superconducting quantum computers, has been instrumental in shaping the domestic industry and solidifying China’s position in the global quantum race.

Impact and Influence 🌍

Dr. Luan Tian has had a tremendous impact on both the academic and industrial sectors of Quantum Technology. As the Operation Director of the Yangtze River Delta Industrial Innovation Center of Quantum Technology, he has facilitated the growth and development of quantum technologies in the region. His leadership has contributed to building the core equipment and infrastructure needed to support the future of quantum computing in China and has made a significant contribution to the global quantum computing community.

Academic Cites 📚

Dr. Luan Tian’s academic contributions are reflected in his publications, with more than ten high-level academic papers in peer-reviewed journals. These papers have been widely cited, showcasing the relevance and impact of his research in the field of Quantum Information. His work has gained recognition from scholars worldwide, solidifying his position as a leader in Quantum Computing.

Research Skills 🔧

Dr. Luan Tian possesses exceptional research skills, particularly in the areas of quantum systems design, superconducting qubits, and quantum information processing. He has a deep understanding of quantum hardware and software integration, making him a crucial figure in developing practical quantum computing solutions. His research is at the forefront of advancing quantum computing toward real-world applicability.

Teaching Experience 🍎

As an off-campus tutor for doctoral students, Luan Tian has a significant role in shaping the next generation of quantum researchers. His teaching experience reflects his commitment to academia and his passion for nurturing young talent in the emerging field of Quantum Computing. His mentorship extends beyond lectures, as he actively guides students through their research endeavors, preparing them for future challenges in the tech industry.

Awards and Honors 🏅

Dr. Luan Tian has received numerous awards and recognitions for his outstanding contributions to Quantum Information and Quantum Computing. He has been recognized as an outstanding youth by the China Electronics Technology Group Corporation and as a leading talent in Suzhou innovation. His work has earned him high regard within both academic and industrial communities, and he continues to receive praise for his leadership in scientific research.

Legacy and Future Contributions 🔮

Dr. Luan Tian’s legacy in Quantum Technology is already taking shape. His pioneering work in superconducting quantum computers and quantum technologies is expected to have a lasting influence on the global scientific community. Moving forward, he aims to expand his research into interdisciplinary areas, pushing the boundaries of Quantum Computing and Quantum Information. As a leading figure in China’s quantum industry, his future contributions will likely continue to shape the global landscape of quantum technology.

  Publications Top Notes

Non-Markovian quantum gate set tomography

  • Authors: Li, Z.-T., Zheng, C.-C., Meng, F.-X., Zhang, Z.-C., Yu, X.-T.
    Journal: Quantum Science and Technology
    Year: 2024

A quantum synthetic aperture radar image denoising algorithm based on grayscale morphology

  • Authors: Wang, L., Liu, Y., Meng, F., Zhang, Z., Yu, X.
    Journal: iScience
    Year: 2024

Improved Quantum Approximate Optimization Algorithm for Low-Density Parity-Check Channel Decoding

  • Authors: Zeng, H., Meng, F., Luan, T., Yu, X., Zhang, Z.
    Journal: Advanced Quantum Technologies
    Year: 2024

Quantum Tomography: From Markovianity to Non-Markovianity

  • Authors: Luan, T., Li, Z., Zheng, C., Yu, X., Zhang, Z.
    Journal: Symmetry
    Year: 2024

Practical circuit optimization algorithm for quantum simulation based on template matching

  • Authors: Liu, Y., Zhang, Z., Hu, Y., Zhang, X., Yu, X.
    Journal: Quantum Information Processing
    Year: 2024

 

 

Basudev Nag Chowdhury | Quantum Technologies | Best Researcher Award

Dr. Basudev Nag Chowdhury | Quantum Technologies | Best Researcher Award

QSciT Research | India

Dr. Basudev Nag Chowdhury, an accomplished scientist and researcher, is currently the Head of Research & Innovation at QSciT Research Pvt. Ltd., Kolkata, India. He is also a Senior Research Consultant with the Nano Bio-Photonics Group at the Department of Electronics & Electrical Communication Engineering, IIT Kharagpur. With a strong background in Quantum Physics and Nanotechnology, Dr. Chowdhury has made notable contributions in areas such as quantum computing, quantum-enhanced sensing, and neuromorphic computing. His research combines both theoretical and experimental approaches to explore and manipulate quantum phenomena for practical applications.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 🎓

Dr. Chowdhury’s academic journey began with a B.Sc. in Physics (Hons.) from Presidency College, University of Calcutta in 2006, followed by a M.Sc. in Physics from the Department of Physics, University of Calcutta in 2008. His passion for the frontier of nanotechnology led him to pursue a PhD at the Centre for Research in Nanoscience and Nanotechnology (CRNN), University of Calcutta, where he made significant contributions to transport behavior modeling in nanowires. His doctoral thesis was focused on Silicon Nanowire Field Effect Transistors (Si NWFETs), which has been highly influential in the field of nanoelectronics.

Professional Endeavors 🚀

Dr. Chowdhury has held several prestigious research positions over the years. From being a Project Fellow to a Post-Doctoral Research Associate at the University of Calcutta, his career trajectory shows consistent growth in both teaching and research. His tenure at IIT Kharagpur and University of Calcutta as a Visiting Researcher is marked by impactful contributions to quantum physics, nanotechnology, and neuromorphic computing. Notably, Dr. Chowdhury’s involvement in the Nano Bio-Photonics Group at IIT Kharagpur reflects his expanding role in integrating quantum technology with biological sciences.

Contributions and Research Focus 🔬

Dr. Chowdhury’s research focus lies primarily in quantum computing, quantum sensing, and nanotechnology. He is particularly interested in developing CMOS-compatible room-temperature qubits, manipulating quantum entanglement using voltage control, and quantum solar cells. His work on voltage-tunable quantum dots (VTQDs), quantum-enhanced biosensors, and exceptional point physics has been groundbreaking. Furthermore, Dr. Chowdhury is advancing the understanding of neuromorphic computing and brain-inspired physics using Non-equilibrium Green’s Function (NEGF) techniques.

Research Skills 🛠️

Dr. Chowdhury possesses a wide range of research skills, including theoretical modeling, experimental fabrication, and quantum device simulation. His expertise in the NEGF framework has facilitated the development of quantum simulators for various nanoelectronic applications. His work on quantum dots, nano-wire transistors, and nano-scale materials has provided insights into quantum transport and energy harvesting. His skillset also extends to quantum-enhanced sensing, bio-sensing, and strain-engineering of materials.

Teaching Experience 🍎

Dr. Chowdhury has contributed significantly to the education and mentoring of students in the fields of Quantum Mechanics, Nanotechnology, and Nanoscience. At IIT Kharagpur, he serves as a Senior Research Consultant, where he not only leads advanced research projects but also helps train the next generation of scientists and engineers in quantum physics and nanoelectronics. His ability to bridge the gap between theory and application makes him a highly respected figure in both teaching and research.

Awards and Honors 🏅

Dr. Chowdhury’s dedication and expertise have been recognized with several awards, including being named an IOP Trusted Reviewer (2022). His extensive contributions to quantum technology and nanoelectronics continue to earn him recognition within the scientific community.

Legacy and Future Contributions 🔮

Dr. Chowdhury is poised to continue making groundbreaking contributions in the fields of quantum technology, neuroscience-inspired computing, and nanoelectronics. His focus on quantum-based biosensors and exceptional-point-enhanced sensing could revolutionize healthcare diagnostics and environmental sensing. As he prepares to submit his monograph in 2025, Dr. Chowdhury’s legacy in the field of quantum physics will likely inspire future generations of researchers.

Citations📚

A total of 244 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations – 244
  • h-index   –    10
  • i10-index –    11

Publications Top Notes

Exceptional-Point-Enhanced Superior Sensing Using Asymmetric Coupled-Lossy-Resonator Based Optical Metasurface

  • Authors: Nag Chowdhury, B., Lahiri, P., Johnson, N.P., De La Rue, R.M., Lahiri, B.
    Journal: Laser and Photonics Reviews

Nonequilibrium VLS-grown stable ST12-Ge thin film on Si substrate: a study on strain-induced band engineering

  • Authors: Mandal, S., Nag Chowdhury, B., Tiwari, A., Banerjee, A., Chattopadhyay, S.
    Journal: Journal of Materials Science

Dual-Gate GaAs-Nanowire FET for Room Temperature Charge-Qubit Operation: A NEGF Approach

  • Authors: Nag Chowdhury, B., Chattopadhyay, S.
    Journal: Advanced Quantum Technologies

Development of substrate engineered Si-<111>/[100] Patterned Features by anisotropic wet etching with Pt/Pt3Si mask

  • Authors: Mandal, S., Das, C., Sikdar, S., Karmakar, A., Chattopadhyay, S.
    Journal: Materials Chemistry and Physics

Voltage-Tunable Quantum-Dot Array by Patterned Ge-Nanowire-Based Metal-Oxide-Semiconductor Devices

  • Authors: Sikdar, S., Nag Chowdhury, B., Saha, R., Chattopadhyay, S.
    Journal: Physical Review Applied

 

 

 

Dong Xie | Quantum Information | Best Researcher Award

Dr. Dong Xie | Quantum Information | Best Researcher Award

Dr. Dong Xie | School of Science, Guilin University of Aerospace Technology | China

Dr. Dong Xie is a prominent professor at the Guilin University of Aerospace Technology, having completed his Ph.D. at the University of Science and Technology of China in 2015. With more than 50 published papers, over 30 of which were as the first author, he has established himself as an expert in quantum metrology. His research primarily focuses on using quantum resources to improve the precision of parameter measurements.

👨‍🎓 Publication Profile

Scopus

Orcid

📚 Early Academic Pursuits

Dong Xie’s academic journey began with a passion for physics and a drive to explore the quantum realm. His educational pursuits culminated in a Ph.D. in Quantum Metrology at the University of Science and Technology of China, completed in 2015. During this time, he developed a deep understanding of quantum mechanics and advanced metrology techniques, laying the foundation for his impactful career.

🏢 Professional Endeavors

After earning his Ph.D. in 2015, Xie joined Guilin University of Aerospace Technology as a professor, where he continues to make significant contributions to the academic world. His professional path reflects his commitment to quantum science and aerospace technologies. His work has bridged the gap between quantum theory and its real-world applications, particularly in measurement technologies that can benefit from quantum-enhanced precision.

🧪 Contributions and Research Focus

Dr. Dong Xie’s research has significantly advanced the field of quantum metrology. His primary focus has been on utilizing quantum resources to develop innovative schemes that improve the accuracy of parameter measurement. These schemes harness quantum phenomena such as entanglement and quantum interference to achieve unprecedented levels of precision, especially in areas requiring highly accurate measurements like gravimetry and interferometry.

📖 Academic Cites

Dr. Dong Xie’s scholarly work has received numerous citations, underscoring its significance in the quantum metrology community. His widely referenced papers provide a valuable resource for researchers working on precision measurement techniques.

🔬Research Skills 

Xie’s technical expertise includes advanced quantum theory, experimental quantum physics, and metrology techniques. He is highly skilled in employing quantum entanglement and quantum correlations to improve measurement accuracy. His technical proficiency extends to computational modeling, data analysis, and the practical implementation of quantum devices for enhancing measurement precision in real-world applications.

🎓 Teaching Experience

As a professor at Guilin University of Aerospace Technology, Dong Xie has taught numerous courses on quantum mechanics, quantum metrology, and related fields. His teaching philosophy emphasizes practical applications of quantum theory and encourages students to engage with cutting-edge research. Xie has supervised several graduate and Ph.D. students, guiding them through complex topics in quantum physics and measurement science, while nurturing a new generation of quantum researchers.

  Publications Top Notes

 

 

 

Xuyang Wang | Quantum Information | Best Researcher Award

Assoc. Prof. Dr. Xuyang Wang | Quantum Information | Best Researcher Award

Assoc. Prof. Dr. Xuyang Wang | The Institute of Optoelectronics, Shanxi University | China

Dr. Xuyang Wang is an associate professor at the Institute of Opto-electronics in Shanxi University, China. He specializes in continuous-variable quantum communication, combining both theoretical and experimental studies. His research plays a pivotal role in advancing quantum communication and has led to over 60 SCI papers, numerous patents, and substantial contributions to national industry standards. Recognized as an outstanding young talent in the Sanjin Talent program, Dr. Wang continues to make significant strides in the field of quantum optics and quantum technologies.

👨‍🎓 Publication Profile

Early Academic Pursuits 🎓

Dr. Wang’s academic journey began with a Bachelor’s degree in Physics from Shanxi University in 2007. His dedication and passion for physics led him to pursue a Ph.D. in Optics, which he completed in 2013. His academic achievements were marked by the successful completion of a Doctoral thesis that focused on quantum optics and quantum communication. During this period, he laid the foundation for his future work in quantum technologies.

Professional Endeavors 🚀

After completing his Ph.D., Dr. Wang joined the State Key Laboratory of Quantum Optics and Opto-electronic Devices in 2013. Here, he became deeply involved in national-level scientific research projects, including the National Key Research and Development Program and the National Science and Technology Innovation 2030 project focusing on quantum communication and quantum computing. These roles allowed him to further his research and make substantial contributions to China’s growing expertise in quantum technologies.

Contributions and Research Focus 🔬

Dr. Wang’s research primarily focuses on continuous-variable quantum communication, a key area of quantum information science. His work explores both theoretical models and experimental implementations, aiming to develop practical applications for quantum communication in real-world scenarios. He has made pioneering contributions to understanding the quantum communication channel, improving its reliability and efficiency for future quantum networks.

Academic Cites and Recognition 🏆

Dr. Wang’s work has been widely cited, with his research appearing in numerous high-impact journals and conferences. His expertise in quantum communication and optics has earned him recognition both nationally and internationally, contributing to his selection as an outstanding young talent in the Sanjin Talent program.

Teaching Experience 📚

As an Associate Professor at Shanxi University, Dr. Wang has lectured on quantum optics, quantum information, and optical communications. His educational impact extends to guiding graduate students and postdoctoral researchers, nurturing the next generation of quantum scientists. His teaching is aligned with his research, ensuring that students are equipped with both the theoretical foundations and practical skills needed in quantum technologies.

Publications Top Notes

 

Ni Liu | Quantum Technologies | Best Extension Activity Award

Mrs. Ni Liu | Quantum Technologies | Best Extension Activity Award

Teacher at Shanxi University, China

Ni Liu, a 34-year-old female academic from Shanxi, China, is an Associate Professor at the Institute of Theoretical Physics of Shanxi University. With a PhD in Theoretical Physics from Shanxi University, her research primarily focuses on quantum optics, quantum computing, and condensed matter physics, especially in systems involving ultracold atoms and high-finesse optical cavities. Ni Liu has been involved in a range of pioneering theoretical and experimental work, contributing significantly to our understanding of quantum phase transitions and atom-photon interactions.

👨‍🎓 Profile

📚 Early Academic Pursuits

Ni Liu completed her BS in Physics at Taiyuan Normal University in 2008 and later earned her PhD in Theoretical Physics from the Institute of Theoretical Physics of Shanxi University (2008-2013). Her doctoral research, under the mentorship of Prof. Jiuqing Liang and Prof. Gang Chen, involved significant contributions to Dicke quantum phase transitions in open systems and the self-organization of Bose-Einstein condensates (BEC), laying the foundation for her future work in quantum optics.

🏫 Professional Endeavors

Ni Liu has been a prominent academic at Shanxi University since 2013. She began as a lecturer at the School of Physical and Electronic Engineering and later advanced to the role of Associate Professor at the Institute of Theoretical Physics. Over the years, she has gained significant recognition in both national and international academic communities for her theoretical work and contributions to quantum physics.

🔬 Contributions and Research Focus

Ni Liu’s research primarily revolves around the interaction between ultracold atoms and high-finesse optical cavities, exploring systems that bridge quantum optics and condensed matter physics. Her work in Dicke quantum phase transitions and nonlinear atom-photon interactions has broadened the understanding of quantum phase transitions, including in BEC-cavity systems. Liu has contributed to the theory behind Bose-Einstein condensates (BEC) in optomechanical cavities, where she has proposed novel quantum phase transitions and multi-component BEC systems.

💼 Research Grants & Funding

Ni Liu has been the principal investigator on several significant grants:

  • National Natural Science Foundation of China (2014-2017)
  • Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province (2014-2016)
  • Natural Science Foundation of Shanxi Province (2017-2019) Additionally, she has been a key participant in several other collaborative projects, contributing to the advancement of experimental and theoretical quantum physics.

🌍 Collaborations and Partnerships

Ni Liu’s research has fostered collaborations with both national and international researchers. Her contributions to quantum optics and condensed matter physics have involved joint efforts with leading universities and research institutions in China and beyond. Her work is at the intersection of experimental physics and theoretical quantum mechanics, fostering collaboration between these disciplines.

Top Noted Publications

 

 

Xiaopeng Fan | Chiral symmetry breaking | Best Researcher Award

Mr. Xiaopeng Fan | Chiral symmetry breaking | Best Researcher Award

👨‍🎓 Profile

🎓 Early Academic Pursuits

Xiaopeng Fan’s academic journey began with a strong foundation in physics and optoelectronic engineering, which led to his position as an Associate Professor at the College of Physics and Optoelectronic Engineering, Taiyuan University of Technology. His early academic pursuits were focused on the fundamental aspects of materials science, quantum physics, and nonlinear optics, areas in which he later became a leading researcher. With an eagerness to explore and innovate, Xiaopeng’s early work focused on the intricacies of two-dimensional materials, particularly the optical properties of transition metal dichalcogenides (TMDs) such as WS2.

🧑‍🔬 Professional Endeavors

Currently an Associate Professor at the College of Physics and Optoelectronic Engineering, Taiyuan University of Technology, Xiaopeng Fan leads a team investigating spiral WS2 nanosheets and other cutting-edge materials. His academic roles extend to mentoring graduate students and collaborating with global institutions on multidimensional optical phenomena. His professional journey reflects a commitment to advancing photonics and material science research.

🌟 Contributions and Research Focus

Xiaopeng Fan’s work has focused extensively on 2D spiral WS2 and its applications in nonlinear optical phenomena. Notable contributions include the exploration of Moiré superlattices, giant second harmonic generation, and valley coherence in WS2 spirals. His research bridges the gap between theoretical material properties and practical optical applications, offering significant insights for future quantum technologies.

🌎 Impact and Influence

Fan’s innovative studies on broken symmetry and extreme optical nonlinearities have garnered widespread recognition. Publications in high-impact journals like Advanced Materials, ACS Nano, and Science have established him as a thought leader. His work not only advances academic research but also impacts optical device engineering, promising next-gen photonic technologies.

📚 Academic Cites

With numerous highly cited publications, Xiaopeng Fan has firmly established himself as an authority in his field. His work, including key articles like “Robust Layer-Dependent Valley Polarization and Valley Coherence in Spiral WS2,” has earned wide recognition in prominent journals such as ACS Nano, Science, and Nano Letters. His citations and collaborations reflect the global recognition of his research, particularly in the study of valleytronic properties and nonlinear phenomena in 2D materials.

🛠️ Technical Skills

Proficient in advanced material characterization, Xiaopeng Fan employs techniques such as Raman spectroscopy, photoluminescence, and nonlinear optical measurements. His skill set includes computational modeling, enabling the precise prediction of optical behaviors in 2D materials.

🧑‍🏫 Teaching Experience

As an Associate Professor, Xiaopeng Fan is also deeply involved in academic teaching and mentoring students. His teaching approach combines his theoretical knowledge with practical insights from his research, making complex concepts in quantum physics and materials science accessible and engaging. He has supervised graduate students and postdoctoral researchers, fostering an environment that encourages innovation and critical thinking. His influence extends beyond the classroom, where his students continue to make meaningful contributions to materials science and quantum technology.

Top Noted Publications

Giant Second Harmonic Generation in Supertwisted WS2 Spirals Grown in Step-Edge Particle-Induced Non-Euclidean Surfaces
  • Authors: Tong, T., Chen, R., Ke, Y., Fan, X., Zhang, Q.
    Journal: ACS Nano
    Year: 2024, 18(33), pp. 21939–21947
Achieving chirality and unidirectional emission in optical microcavity via external perturbations
  • Authors: Liu, C., Jiang, S., Zhou, H., Fan, X., Gu, Z.
    Journal: Optics and Laser Technology
    Year: 2024, 171, 110464
Competition mechanism of exciton decay channels in the stacked multilayer tungsten sulfide
  • Authors: Yu, Y., Fan, X., Liu, S., Yao, L.
    Journal: Optics Express
    Year: 2023, 31(6), pp. 9350–9361
Strain induced magnetic hysteresis in MoS2 and WS2 monolayers with symmetric double sulfur vacancy defects
  • Authors: Xue, L., He, C., Yang, Z., Zhang, L., Yang, L.
    Journal: Physical Chemistry Chemical Physics
    Year: 2022, 24(28), pp. 17263–17270
Research Progress on Fabrication of Thin Black Phosphorus Materials and Its Optoelectronic Devices
  • Authors: Feng, K., Feng, L., Li, G.-H., Fan, X.-P., Cui, Y.-X.
    Journal: Faguang Xuebao/Chinese Journal of Luminescence
    Year: 2021, 42(11), pp. 1686–1700

 

 

Lilia Tightiz | Quantum Computing | Best Researcher Award

Assist. Prof. Dr. Lilia Tightiz | Quantum Computing | Best Researcher Award

Assistant Professor at Gachon University, South Korea

Dr. Lilia Tightiz is an accomplished Assistant Professor at Gachon University, Korea, specializing in Computer Science and Engineering. She earned her Ph.D. in Computer Science and Engineering from Sejong University, Korea, in February 2022. With over 15 years of experience in the Electric Power Distribution Industry, Dr. Tightiz has made significant contributions in the design, utilization, and maintenance of electricity distribution grids. She has received numerous accolades, including world-class prizes for her inventions and contributions to the power distribution sector. Dr. Tightiz’s research interests span microgrid energy management, smart grid communication, and quantum machine learning, with a focus on deep reinforcement learning applications in power systems.

Profile🎓

Early Academic Pursuits 🎓

Lilia Tightiz began her academic journey in the field of Computer Science and Engineering, receiving her Ph.D. degree from Sejong University, Korea, in February 2022. Her early academic pursuits were driven by a passion for technological advancements in the electric power distribution sector, which laid the foundation for her future research in microgrid energy management systems and smart grids. Her doctoral research focused on deep, specialized topics within power systems and energy management, helping her build a strong foundation in renewable energy integration and smart grid technologies. With a solid academic background in engineering and computer science, Dr. Tightiz combines practical and theoretical insights to approach modern energy challenges.

Professional Endeavors ⚡

Dr. Tightiz has accumulated over 15 years of professional experience in the Electric Power Distribution Industry. As a Power Distribution Engineer, she contributed to the design, utilization, and maintenance of electricity distribution grids, working on several impactful projects. Her expertise in the sector is demonstrated through her numerous patents and recognition in prestigious forums such as the International Trade Fair for Ideas, Inventions, New Products in Nuremberg, Germany, and the Korean International Women Invention event. These accolades highlight her global influence and her role in transforming the power distribution industry. Dr. Tightiz has also contributed significantly to energy technology exhibitions, such as the Bitgaram International Exposition of Electric Power Technology and the International Invention Fair.

Contributions and Research Focus 🔬

Dr. Tightiz’s research is centered around microgrid energy management, smart grid communication structures, and deep reinforcement learning applications in power systems. She has delved into the intersection of electric vehicles (EVs), charging/discharging scheduling, and quantum machine learning, which are emerging areas in the modern energy landscape. Her work also explores the integration of IEC 61850 and IEC 62439 standards into smart grid systems, ensuring seamless communication and improved system resilience. Dr. Tightiz is particularly focused on optimizing energy efficiency and enhancing grid stability, leveraging cutting-edge technologies like deep reinforcement learning to offer innovative solutions for energy management systems in microgrids.

Impact and Influence 🌍

Dr. Tightiz has had a significant impact on both industry practices and academic research in the power distribution and energy management sectors. Her participation in international trade fairs and expos, along with her patents and world-class prizes, underscores her influence on global energy systems. As an associate editor for the e-Prime (Elsevier) Journal, she has contributed to advancing knowledge and fostering innovation in her field. Her work has been pivotal in bridging the gap between traditional power systems and emerging smart grid technologies, and her contributions are shaping the future of sustainable energy.

Academic Cites 📚

Dr. Tightiz’s research has garnered significant attention, with her work being widely cited in top-tier journals and conferences. Her academic contributions, particularly in deep reinforcement learning and smart grid communication, have positioned her as a leading expert in the field of power systems and energy management. Her efforts to integrate quantum machine learning with power distribution have been recognized as cutting-edge, with increasing citations and collaborations from leading institutions and industry stakeholders.

Technical Skills 🛠️

Dr. Tightiz’s technical expertise spans a wide array of skills and knowledge areas that are critical for modern power systems. She is proficient in deep reinforcement learning algorithms, smart grid communication protocols (IEC 61850, IEC 62439), and the development of microgrid energy management systems. Additionally, she is well-versed in energy optimization techniques, power system modeling, and quantum computing applications in power grids. Her multi-disciplinary skill set makes her a versatile researcher and educator in both engineering and computer science.

Teaching Experience 👩‍🏫

Dr. Tightiz currently serves as an assistant professor at Gachon University, Korea, where she began her academic career in April 2022. Her teaching focuses on cutting-edge topics such as smart grids, power systems, machine learning, and quantum computing in energy applications. Her strong professional background allows her to bring real-world experiences into the classroom, making her lectures highly relevant to current energy challenges. Dr. Tightiz fosters an interactive learning environment, encouraging her students to engage with modern technologies like microgrids and reinforcement learning algorithms to solve pressing energy issues.

Legacy and Future Contributions 🌟

Dr. Tightiz’s legacy is already being shaped by her innovative contributions to the power distribution industry and her leading-edge research in smart grid technologies. Looking forward, she aims to further advance the integration of quantum machine learning in power system optimization and continue her work on microgrids. Her future research will explore sustainable energy solutions and contribute to the global transition towards renewable energy. Dr. Tightiz is also focused on training the next generation of energy scientists and engineers, with a focus on developing innovative technologies that will drive energy sustainability and grid stability.

Top Noted Publications📖

Metaverse-driven smart grid architecture
    • Authors: Lilia Tightiz, L. Minh Dang, Sanjeevikumar Padmanaban, Kyeon Hur
    • Journal: Energy Reports
    • Year: 2024
Enhancing data security and privacy in energy applications: Integrating IoT and blockchain technologies
    • Authors: Hari Mohan Rai, Kaustubh Kumar Shukla, Lilia Tightiz, Sanjeevikumar Padmanaban
    • Journal: Heliyon
    • Year: 2024
Quantum-Fuzzy Expert Timeframe Predictor for Post-TAVR Monitoring
    • Authors: Lilia Tightiz, Joon Yoo
    • Journal: Mathematics
    • Year: 2024
Providing an Intelligent Frequency Control Method in a Microgrid Network in the Presence of Electric Vehicles
    • Authors: Mousa Alizadeh, Lilia Tightiz, Morteza Azimi Nasab
    • Journal: World Electric Vehicle Journal
    • Year: 2024
Implementing AI Solutions for Advanced Cyber‐Attack Detection in Smart Grid
    • Authors: Lilia Tightiz, Rashid Nasimov, Morteza Azimi Nasab, Mohamed Louzazni
    • Journal: International Journal of Energy Research
    • Year: 2024
A cluster-based trusted routing method using fire hawk optimizer (FHO) in wireless sensor networks (WSNs)
    • Authors: Mehdi Hosseinzadeh, Joon Yoo, Saqib Ali, Jan Lansky, Stanislava Mildeova, Mohammad Sadegh Yousefpoor, Omed Hassan Ahmed, Amir Masoud Rahmani, Lilia Tightiz
    • Journal: Scientific Reports
    • Year: 2023
A secure routing approach based on league championship algorithm for wireless body sensor networks in healthcare
    • Authors: Mehdi Hosseinzadeh, Adil Hussein Mohammed, Amir Masoud Rahmani, Farhan A. Alenizi, Seid Miad Zandavi, Efat Yousefpoor, Omed Hassan Ahmed, Mazhar Hussain Malik, Lilia Tightiz
    • Journal: PLOS ONE
    • Year: 2023