Boxun Li | Quantum Computing | Best Researcher Award

Assist. Prof. Dr. Boxun Li | Quantum Computing | Best Researcher Award

Teacher at  Xiangtan University, China

Dr. Boxun Li is an Associate Professor at Xiangtan University, China, specializing in micro-nano optical device design and deep learning-based inverse design techniques. With a Ph.D. in optics-related fields, he has emerged as a leading researcher, contributing to cutting-edge advances in photonic devices, metamaterials, and terahertz absorbers. Dr. Li has published over 22 SCI-indexed papers as the first or corresponding author, illustrating both consistency and innovation in his field. His interdisciplinary approach merges computational intelligence with photonics, creating a unique research niche that aligns with the future of smart optical engineering and quantum device design.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Dr. Boxun Li began his academic journey with a deep passion for optics and photonics, which guided his undergraduate and graduate studies. His doctoral work laid a strong theoretical and practical foundation in optical physics, nanostructures, and simulation-based design methods. Early in his career, Dr. Li demonstrated a keen interest in innovative sensor design, contributing to foundational studies in photonic crystal fibers and optical simulations. These formative years not only built his research skills but also ignited his interest in applying artificial intelligence to solve inverse problems in complex optical systems.

🧑‍🏫 Professional Endeavors

Since joining Xiangtan University as an Associate Professor, Dr. Li has engaged in multidisciplinary research integrating optical engineering, materials science, and deep learning. His professional pursuits are centered on the inverse design of optical devices using neural networks and algorithmic frameworks. He has taken leadership in publishing in respected journals such as Physica B, Physica E, and Current Applied Physics. In addition to research, Dr. Li contributes to academic service through mentoring students, organizing seminars, and collaborating across departments, aiming to create a synergistic academic ecosystem within the university and beyond.

🔬 Contributions and Research Focus

Dr. Li’s research significantly advances micro-nano photonic technologies. He focuses on deep learning-assisted inverse design, where AI is used to generate highly optimized and compact photonic structures. His work includes graphene terahertz metamaterials, SPR-based fiber sensors, VO₂ multilayer nanostructures for camouflage, and perovskite-based solar cells. These studies demonstrate his methodological innovation and real-world application potential. Dr. Li’s interdisciplinary expertise enables him to explore thermal, optical, and electronic interactions at the nano-scale, with an emphasis on energy harvesting, sensing, and functional smart surfaces, making his research highly relevant to both academia and industry.

🌍 Impact and Influence

Dr. Li’s work has been cited by numerous researchers worldwide, especially in the domains of metamaterials, energy-efficient devices, and optical sensors. With citations growing steadily, key papers have influenced subfields such as terahertz absorption, photonic crystal fibers, and dual-band camouflage systems. His integration of machine learning into physical design frameworks positions him as a pioneer in data-driven optical device engineering. Furthermore, his contributions are beginning to shape how inverse problem-solving is approached in quantum optics and nanophotonics, proving his work to be both timely and transformative in high-tech fields.

📚 Academic Cites

Dr. Li’s body of work currently garners over 35 citations across five major publications from 2025 alone, including:

  • 13 citations for his work in graphene-based THz absorbers

  • 12 citations on perovskite solar cell simulations

  • 9 citations on polarization-sensitive metamaterials
    Each paper reflects practical relevance, academic originality, and technical sophistication. These citations reflect growing engagement from global researchers in condensed matter, optical engineering, and applied physics. As more articles are indexed, Dr. Li’s citation count and research reputation are expected to expand, particularly in AI-enhanced optical simulations and quantum-inspired device architectures.

🧪 Research Skills

Dr. Li’s technical proficiency spans nanophotonics, electromagnetic simulation, terahertz technologies, SPR sensors, and AI-driven design models. He is highly skilled in tools like COMSOL, Lumerical, and Python-based deep learning platforms for modeling and optimization. His capacity to combine physical intuition with computational algorithms allows him to solve complex inverse problems, design novel device geometries, and predict device performance with high precision. His research approach is data-centric, experimentally relevant, and solution-oriented, making him an asset to collaborative, high-impact projects across photonics, materials, and electronics.

👨‍🏫 Teaching Experience

As a committed educator, Dr. Li teaches advanced undergraduate and graduate-level courses in optical device engineering, computational physics, and nanostructure design. His teaching style emphasizes active learning, project-based education, and industry-aligned skills. Dr. Li has supervised undergraduate theses, graduate research projects, and offers mentorship in research writing and publication strategy. He incorporates his real-time research insights into the classroom, encouraging students to engage with current scientific challenges and solutions. His dual role as researcher and mentor helps students build a solid foundation in both theoretical optics and applied nanotechnology.

🔮 Legacy and Future Contributions

Dr. Boxun Li is poised to leave a lasting impact on the field of AI-integrated photonic design. By bridging deep learning and device engineering, he is redefining how future optical systems can be developed faster, smarter, and more cost-effective. He aims to build a research hub that nurtures innovation in inverse design, quantum photonic platforms, and functional optical materials. His future contributions are expected to span green energy, wearable optics, and adaptive camouflage technologies. With sustained focus and global collaboration, Dr. Li will solidify a legacy of innovation, shaping the future of smart photonics.

Publications Top Notes

Structural design and analysis of D-type elliptical open-loop photonic crystal fiber temperature sensor based on SPR

  • Authors: Boxun Li, et al.
    Journal: Physica B: Condensed Matter
    Year: 2025

Graphene terahertz metamaterials absorber with multiple absorption peaks and adjustable incident polarization angle

  • Authors: Boxun Li, et al.
    Journal: Physica B: Condensed Matter
    Year: 2025

Phase-transition-enabled dual-band camouflage in VO₂/Ag multilayered nanostructures

  • Authors: Boxun Li, et al.
    Journal: Physica E: Low Dimensional Systems and Nanostructures
    Year: 2025

Photoelectric simulation of perovskite solar cells based on two inverted pyramid structures

  • Authors: Boxun Li, et al.
    Journal: Physics Letters A: General Atomic and Solid State Physics
    Year: 2025

Design and application of multi-absorption and highly sensitive monolayer graphene microstructure absorption devices located at terahertz frequencies

  • Authors: Boxun Li, et al.
    Journal: Current Applied Physics
    Year: 2025

 

 

Polosan Silviu | Quantum Computing | Best Researcher Award

Dr. Polosan Silviu | Quantum Computing | Best Researcher Award

NIMP | Romania

E. Poloșan Silviu Pavel is a Senior Researcher I at the National Institute of Materials Physics (NIMP Bucharest-Magurele), with a long-standing career in Condensed Matter Physics, particularly in the fields of optics, spectroscopy, and OLED technology. With over 25 years of experience, his work spans from research assistant to senior researcher, with a notable focus on organometallic compounds and rare-earth ion spectroscopy. His significant contributions in material science and nanotechnology have earned him global recognition.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 🎓

Pavel’s academic journey began with a Ph.D. in Physics from the prestigious Bucharest University, where he specialized in Optics and Spectroscopy (1995-2002). His foundational education was strengthened during his undergraduate studies, where he earned a Physicist degree from the Faculty of Physics at Bucharest University (1988-1993), focusing on plasma physics, laser spectroscopy, and optics. During his early academic years, he also attended the “Iacob Muresianu” High School in Blaj, excelling in mathematics and physics.

Professional Endeavors 🧑‍🔬

Since 1993, Pavel has been a dedicated part of NIMP Bucharest-Magurele, where he has held various prestigious roles. Starting as a Research Assistant, he grew into a Senior Researcher responsible for crystal growth and scintillating detector studies. Over the years, he has been heavily involved in organometallic compound synthesis, OLED technology, and magneto-optical spectroscopy of rare-earth ions. His ability to lead and manage international collaborations has propelled his career, from coordinating 9 national and international projects to collaborating with high-level research institutes like ENEA Frascati Rome and Universität Roma Tre.

Contributions and Research Focus 🔬

Pavel’s research contributions cover a broad spectrum of materials science and condensed matter physics. He has extensively studied organometallic compounds for OLED applications, magneto-optical properties of rare-earth ions, and ferromagnetic materials. His work on amorphous and polycrystalline Bi4Ge3O12 materials has led to important insights into optical properties, structural changes, and energy absorption dynamics. Additionally, his studies on metallic nanoparticles and nanoclusters in alkali halide crystals have significantly advanced our understanding of nanomaterials.

Impact and Influence 🌍

Pavel’s research has had a notable global impact, as demonstrated by his 67 scientific papers (including 38 as the corresponding author) and 263 citations in leading journals. His contributions have shaped the fields of OLED technology and material characterization. Pavel’s involvement in international collaborations has enhanced the visibility and reach of his work, helping to shape the future of advanced material applications. His role as a supervisor for PhD theses has allowed him to pass on his knowledge, mentoring future leaders in materials science.

Research Skills 🔧

Pavel is a highly skilled researcher in areas such as:

  • Synthesis and characterization of organometallic compounds for OLED applications
  • Spectroscopic analysis of rare-earth doped materials
  • Magneto-optical studies of materials
  • Synthesis of metallic nanoclusters and nanoparticles
  • Crystal growth techniques for scintillating materials
    His deep understanding of these areas enables him to bridge theoretical and experimental approaches, driving innovative solutions in material science.

Teaching Experience 🧑‍🏫

As an academic supervisor, Pavel has guided PhD students on projects ranging from semiconducting organic materials to polymeric nanocomposites. He has imparted knowledge in both material synthesis and optical characterization techniques, contributing to the professional growth of students. His involvement in international research collaborations also allows him to teach students the importance of global scientific cooperation.

Awards and Honors 🏆

Pavel’s scientific achievements have earned him several prestigious awards, including the Academy Prize “Dragomir Hurmuzescu” for Physics in 2000. This award recognized his work on point defects and metallic nanoparticles in KCl crystals. Pavel has also earned recognition from international institutes, having received support for several high-impact research projects, including collaborations with ENEA Frascati and Romanian-Japan projects. His career is a testament to his outstanding contributions to science.

Legacy and Future Contributions 🌱

Pavel’s legacy is firmly established in materials science and condensed matter physics. His work on OLED technologies, organometallic compounds, and advanced spectroscopy continues to inspire future research in these areas. As a supervisor and project leader, he has cultivated a strong foundation for future generations of scientists to build upon. Moving forward, Pavel aims to expand his research into interdisciplinary areas such as nanotechnology and bioengineering, further enhancing the impact of his work on global technological advancements.

Publications Top Notes

  • Phase Transitions in Dimer/Layered Sb-Based Hybrid Halide Perovskites: An In-Depth Analysis of Structural and Spectroscopic Properties

    • Authors: I.C. Ciobotaru, Iulia Corina; C.C. Ciobotaru, Constantin Claudiu; C.M. Bartha, Cristina M.; S. Poloșan, Silviu; C. Beșleagă, Cristina
    • Journal: Advanced Optical Materials
    • Year: 2025
  • Versatile techniques based on the Thermionic Vacuum Arc (TVA) and laser-induced TVA methods for Mg/Mg:X thin films deposition – A review

    • Authors: R. Vlǎdoiu, Rodica; A. Mandeș, Aurelia; V. Dinca, Virginia; C.C. Ciobotaru, Constantin Claudiu; S. Poloșan, Silviu
    • Journal: Journal of Magnesium and Alloys
    • Year: 2024
  • Structural and magneto-optical investigations of citrate sol–gel derived barium hexaferrite nanocrystalline powder

    • Authors: M. Secu, Mihail; C.E. Secu, Corina Elisabeta; E. Matei, Elena; C. Radu, Cristian; S. Poloșan, Silviu
    • Journal: Journal of Alloys and Compounds
    • Year: 2024
  • Microstructural and Morphological Characterization of the Cobalt-Nickel Thin Films Deposited by the Laser-Induced Thermionic Vacuum Arc Method

    • Authors: V. Dinca, Virginia; A. Mandeș, Aurelia; R. Vlǎdoiu, Rodica; V. Ciupinǎ, Victor; S. Poloșan, Silviu
    • Journal: Coatings
    • Year: 2023
  • Organic Light-Emitting Diodes with Electrospun Electrodes for Double-Side Emissions

    • Authors: I.C. Ciobotaru, Iulia Corina; M.M. Enculescu, Monica Maria; S. Poloșan, Silviu; I. Enculescu, Ionuţ; C.C. Ciobotaru, Constantin Claudiu
    • Journal: Micromachines
    • Year: 2023