Umer Nauman | Quantum Computing | Best Researcher Award

Dr. Umer Nauman | Quantum Computing | Best Researcher Award

Post Doctoral Research Associate at Henan University of Technology | China

Dr. Umer Nauman is a dynamic Postdoctoral Research Associate at Henan University of Technology, China, specializing in Quantum Cryptography, Cloud Security, and DNA Cryptography. With a PhD in Computing (Presidential Scholarship) and an MS in Software Engineering (Chinese Government Scholarship), he has established a strong academic and research presence. Dr. Nauman has authored 22+ publications, contributed to government-funded projects, and actively mentors international students. He is fluent in six languages, delivers online lectures at Istanbul Technical University, and serves as a peer reviewer for top Springer journals. His work bridges futuristic security technologies and practical digital innovations.

👨‍🎓Profile

Scopus

ORCID

📘 Early Academic Pursuits 

Dr. Umer Nauman began his academic journey with a passion for computing and security. He pursued his MS in Software Engineering on a prestigious Chinese Government Scholarship, where he laid the foundation in cloud-based systems, algorithmic modeling, and data security. His dedication to excellence and innovation earned him a Presidential Scholarship for his PhD in Computing at Henan University of Technology. During his early academic years, he was already exploring complex domains like Artificial Intelligence and Cryptography, and he published his first international conference papers by 2018, highlighting his early engagement with cutting-edge computational research.

💼 Professional Endeavors

As a Postdoctoral Research Associate at Henan University of Technology, Dr. Nauman is involved in high-impact research in Quantum Mechanics, Blockchain Security, and EHR privacy. He also lectures on advanced computing courses, supervises diverse student cohorts, and contributes to government-funded projects focused on quantum-resilient systems and misuse detection. Since 2022, he has served as an IELTS instructor, helping students across China enhance their language proficiency. Additionally, he is an online lecturer at Istanbul Technical University, delivering virtual classes in Quantum Cryptography. His professional roles combine research innovation, international collaboration, and digital education excellence.

🧠 Contributions and Research Focus

Dr. Nauman’s research is centered on emerging cybersecurity challenges, with a specialized focus on Quantum Cryptography, DNA Cryptography, and Cloud Security Optimization. He has contributed significantly to fields such as Blockchain for Electronic Health Records, Quantum-Safe Cryptographic Systems, and AI-enhanced signature schemes. His research also addresses practical applications in cloud workload management, misuse detection models, and healthcare data privacy. As the lead researcher in a national project on linear model checking, and a co-investigator in developing quantum-resistant systems, he blends theoretical innovation with real-world problem-solving, aimed at future-proofing digital infrastructures.

🌍 Impact and Influence

Dr. Nauman’s influence extends across academia, technology, and international education. His publications in high-impact journals such as Quantum Information Processing, Cluster Computing, and Remote Sensing demonstrate the global relevance of his research. He actively participates in international conferences, including Inscrypt 2023 and the World Youth Development Forum supported by UNESCO. His work on quantum-secure EHRs and AI-enhanced cryptographic models addresses global cybersecurity concerns. Moreover, his mentorship of international graduate students reflects his commitment to cultivating the next generation of researchers. He is a bridge between innovation and instruction, influencing both theory and practice.

📚 Academic Cites 

Dr. Nauman has produced an impressive body of work with 22+ research papers in peer-reviewed journals between 2018 and 2025. His publications have been accepted or published in Q1 and Q2 journals like Scientific Reports, IEEE Access, Interdisciplinary Sciences, and Remote Sensing. His most notable works include papers on quantum-enhanced cloud security, AI-optimized signature schemes, and privacy-preserving healthcare systems. His citation count is on a steady rise, with contributions frequently referenced in studies addressing quantum security and health data systems. His academic output reflects depth, continuity, and global citation relevance.

🧪 Research Skills

Dr. Nauman exhibits mastery in a wide range of research and computational tools, including Python, MATLAB, CloudSim, SPSS, and R. In the quantum domain, he is proficient in Qiskit, Quantum++, and the Microsoft Quantum Development Kit. He employs these tools to conduct simulations, design secure algorithms, and optimize cloud infrastructures. His skills extend to deep learning models, homomorphic encryption, and blockchain integration. He is highly experienced in qualitative and quantitative research methodologies, data visualization, and performance benchmarking. His work combines analytical depth with technical precision, making him an asset in research-intensive environments.

🎓 Teaching Experience 

With extensive teaching experience across online and on-campus platforms, Dr. Nauman has delivered lectures in C++, Data Structures, OOP, Research Methodologies, and Quantum Cryptography. At Henan University of Technology, he has taught both undergraduate and graduate courses, focusing on interactive learning, algorithmic thinking, and data-driven approaches. As an online lecturer at Istanbul Technical University, he translates complex quantum theories into student-friendly modules. His teaching portfolio also includes Excel for Data Analysis, Digital Electronics, and IELTS preparation, showcasing his versatility. He is known for tailoring his instruction to diverse learning styles, blending technology with pedagogy.

🏆 Awards and Honors 

Dr. Nauman is the recipient of multiple prestigious honors, including the Presidential Scholarship for PhD Studies and the Chinese Government Scholarship for his Master’s. His recognition extends to government-funded research projects where he serves as lead researcher and co-investigator. His work has been shortlisted and accepted by high-impact journals, which is an indicator of excellence in scholarly output. His presence at international conferences, and his editorial contributions to Springer Nature journals, further underscore his academic standing. These accolades affirm his status as a promising thought leader in the fields of quantum security and computing research.

🌟 Legacy and Future Contributions 

Dr. Umer Nauman is poised to become a pioneer in quantum-resilient technologies and healthcare data security. His legacy is being shaped by his interdisciplinary research, global educational engagement, and student mentorship. In the coming years, he aims to expand collaborative networks, file patents for applied cryptographic models, and launch open-source frameworks for secure cloud ecosystems. His commitment to digital ethics, privacy rights, and secure systems positions him as a transformative figure in academia and industry. Dr. Nauman’s future work will likely bridge quantum theory and real-world security systems, influencing policy, education, and innovation globally.

Top Noted Publications

Spatiotemporal Dynamics of Evapotranspiration in the Yellow River Basin: Implications of Climate Variability and Land Use Change

  • Authors: Sheheryar Khan, Huiliang Wang, Muhammad Waseem Boota, Umer Nauman, Ali Muhammad, Zening Wu
    Journal: Geomatics, Natural Hazards and Risk
    Year: 2025

Q-ECS: Quantum-Enhanced Cloud Security with Attribute-Based Cryptography and Quantum Key Distribution

  • Authors: Umer Nauman, Miaolei Deng, Yuhong Zhang, Sheheryar Khan, Uzair Salman
    Journal: Quantum Information Processing
    Year: 2025

The Influence of Weather Conditions on Time, Cost, and Quality in Successful Construction Project Delivery

  • Authors: RunRun Dong, Ali Muhammad, Umer Nauman
    Journal: Buildings
    Year: 2025

Evaluating Land Use Impact on Evapotranspiration in Yellow River Basin China Through a Novel GSEBAL Model: A Remote Sensing Perspective

  • Authors: Sheheryar Khan, Huiliang Wang, Umer Nauman, Muhammad Waseem Boota, Zening Wu
    Journal: Applied Water Science
    Year: 2025

NS-OWACC: Nature-Inspired Strategies for Optimizing Workload Allocation in Cloud Computing

  • Authors: Miaolei Deng, Umer Nauman, Yuhong Zhang
    Journal: Computing
    Year: 2025

 

 

Aftab Alam | Quantum Technologies | Excellence in Research Award

Prof. Aftab Alam | Quantum Technologies | Excellence in Research Award

Professor at Indian Institute of Technology Bombay  | India

Professor Aftab Alam is a distinguished physicist specializing in computational materials science, currently serving at the Department of Physics, IIT Bombay. With an expansive career rooted in quantum materials, electronic structure, and vibrational dynamics, Prof. Alam has significantly contributed to both theoretical advancements and applied computational frameworks. His academic journey and professional trajectory reflect a commitment to scientific excellence, interdisciplinary collaboration, and mentorship.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Professor Alam’s academic foundation was built at the University of Calcutta, where he earned his B.Sc. in Physics (Honors) with Mathematics and Chemistry, followed by an M.Sc. in Physics, specializing in Nuclear Physics. He later completed a rigorous Post-M.Sc. course at the S. N. Bose Centre for Basic Sciences, which included intensive examinations and seminar presentations. He pursued his doctoral studies (Ph.D.) at the same institute under the guidance of Prof. Abhijit Mookerjee, focusing on vibrational properties of disordered systems.

🧑‍🏫 Professional Endeavors

Prof. Alam has held progressive academic roles at IIT Bombay since 2013—from Assistant Professor to Associate Professor, and now Professor since April 2022. Before returning to India, he served as a Research Associate at the University of Illinois at Urbana-Champaign and later as Research Staff at the Ames Laboratory (USA). His international exposure greatly enriched his perspective on materials design, thermodynamic modeling, and quantum phase transitions.

🔬 Contributions and Research Focus

Professor Aftab Alam’s research focuses on electronic structure theory, thermoelectric materials, disordered alloys, and vibrational dynamics. He has developed advanced algorithms and efficient computational codes, integrating them with tools like Quantum-Espresso to explore phonon behavior in complex systems. His work covers structural, magnetic, and quantum phase transitions in intermetallics, exotic phases in topological insulators and superconductors, ab-initio transport theory beyond the Boltzmann formalism, and optoelectronic properties of emerging energy materials.

🌍 Impact and Influence

With over 136 peer-reviewed publications, 10 papers under review, and multiple book chapters, Prof. Alam is a globally cited expert in his domain. His pioneering techniques in phonon dispersion and disorder modeling have been cited across research on thermal transport, neutron scattering, and novel quantum materials. His work supports energy innovation, material design, and next-gen computing applications.

📚 Academic Citations and Publications

Professor Aftab Alam’s research portfolio reflects his prolific academic contributions. He has authored books and book chapters, including Lattice Dynamics of Disordered Systems (2016) and key Springer publications on halide perovskites and spin gapless semiconductors. His work includes 4 conference papers, 10 articles under review, and an impressive 136 international journal publications. His complete list of publications is accessible via Google Scholar, highlighting his high-impact research in condensed matter physics and computational material science.

🛠️ Research Skills and Technical Expertise

Prof. Aftab Alam possesses exceptional expertise in first-principles calculations and density functional theory (DFT), with deep specialization in phonon calculations, vibrational entropy, and inelastic neutron scattering. He is proficient in tools like TB-LMTO, KKR-CPA, VASP, Recursion Method, and Tight-Binding, alongside strong FORTRAN programming skills. Notably, he has developed generalized lattice dynamical models for disordered alloys, interfacing efficiently with Quantum-Espresso, which marks a significant advancement in material simulations and computational modeling.

👨‍🏫 Teaching Experience and Mentorship

Over his academic journey, Prof. Aftab Alam has mentored 10 Ph.D. scholars (completed) and is currently guiding 6 ongoing Ph.D. students. He has also supervised 7 postdoctoral fellows, with 2 more ongoing, showcasing his strong role in academic leadership. He actively fosters scholarly engagement, having played a pivotal role in student-led symposia like SYMPHY at IIT Bombay. Additionally, he extended his influence internationally as General Secretary of the ISU Postdoctoral Association, USA, promoting academic collaboration and outreach.

🏅 Awards and Honors

Professor Alam has been consistently recognized for his academic leadership:

  • 🏆 IAAM Scientist Medal, 2016

  • 🎖 DST Young Scientist Award, 2014

  • 🏅 Early Research Achiever Award, IIT Bombay, 2017

  • 🏵 Young Faculty Award, 2013

  • ✍️ Editorial roles in journals such as Chinese Journal of Physics, Frontiers in Physics, and Advanced Materials Letters

  • 📜 Featured in Marquis Who’s Who in the World, 2008

  • 🧪 Multiple national-level exam qualifications: NET-CSIR, JEST

🌟 Legacy and Future Contributions

Prof. Alam is currently involved in organizing international events, including a conference on Photophysics and Photochemistry (2024), and continues to lead multi-crore research projects funded by DST-SERB, MNRE, and IIT Bombay. His focus remains on advancing fundamental understanding while promoting scientific computing tools for widespread academic use. His legacy lies in nurturing next-generation physicists, building research infrastructure, and pushing the boundaries of quantum materials science.

Top Noted Publications

Giant Topological Hall Effect in Magnetic Weyl Metal Mn₂Pd₀.₅Ir₀.₅Sn

  • Authors: Arnab Bhattacharya, P. C. Sreeparvathy, Afsar Ahmed, Aftab Alam, Indranil Das
    Journal: Advanced Functional Materials
    Year: 2025

Photoemission spectroscopy and ab-initio simulation of CrFeVGa and CoFeVSb: a comparative study

  • Authors: Jadupati Nag, Kritika Vijay, Barnabha Bandyopadhyay, Aftab Alam, Krishna Gopinatha Suresh
    Journal: Journal of Physics: Condensed Matter
    Year: 2025

Facilitating White Light Emission through Heterovalent Sr²⁺-Doped Nanocrystals for Visible Light Transparent Electronics

  • Authors: Monika Salesh, Sumit Kumar Sharma, Sanika S. Padelkar, Aftab Alam, Aswani Yella
    Journal: ACS Materials Letters
    Year: 2025

Enhanced piezoresponse in van der Waals 2D CuCrInP₂S₆ through nanoscale phase segregation

  • Authors: Sharidya Rahman, Sanika S. Padelkar, Lan Nguyen, Aftab Alam, Jacek Jaroslaw Jasieniak
    Journal: Nanoscale Horizons
    Year: 2025

Robust Nernst magnetothermoelectricity in the topological spin semimetal FeCrRhX (X=Si, Ge)

  • Authors: Amit Chanda, Jadupati Nag, Noah Schulz, Manhhuong Phan, Hariharan V. Srikanth
    Journal: Physical Review B
    Year: 2025

Durgun Duran | Quantum Technologies | Best Researcher Award

Assoc. Prof. Dr. Durgun Duran | Quantum Technologies | Best Researcher Award

Vice Head of Physics Dept. at Yozgat Bozok University | Turkey

Durgun Duran is an Associate Professor at Yozgat Bozok University in Turkey, specializing in the fields of Quantum Physics and Mathematical Physics. His academic journey began with a Bachelor’s Degree in Physics from Ankara University in 2003, followed by further studies in Quantum Mechanics. He holds a PhD from Ankara University (2019), with his thesis focused on the Perception of Quantum Entanglement, contributing significantly to the field of Quantum Information Theory. Dr. Duran’s expertise lies in quantum entanglement, Yang-Baxter systems, and open quantum systems.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Duran’s academic journey began with a Bachelor’s Degree in Physics from Ankara University in 2003. He also pursued a Bachelor’s in English Language and Literature from Yozgat Bozok University in 2008, showcasing his interdisciplinary interests. His Master’s Thesis in Quantum Entanglement and its Applications paved the way for his Doctoral Studies in Quantum Entanglement at Ankara University. Throughout his studies, he was mentored by Prof. Abdullah Verçin, who influenced his research trajectory.

Professional Endeavors 💼

Dr. Duran’s career includes significant roles at Yozgat Bozok University, where he serves as Associate Professor in the Department of Physics, Mathematical Physics, and has held key leadership roles as Head of the Major Department and Bologna Coordinator. His professional trajectory shows dedication to research and teaching, particularly in the domain of high-energy and quantum physics. He has played an important role as a research assistant and in various administrative roles at the university, showcasing his management and leadership skills.

Contributions and Research Focus 🔬

Dr. Duran’s primary research focus is on Quantum Entanglement and its applications in Quantum Information Theory, including the study of open quantum systems, quantum coherence, and Yang-Baxter systems. His work in Quantum Thermometry and Quantum Fisher Information has significantly advanced understanding in quantum information processing. He is also deeply involved in unitary solutions of Quantum Yang-Baxter Equations and relativistic quantum information, which have broad implications in both theoretical physics and quantum computation.

His research has been supported by TÜBİTAK (Turkey’s national research agency), and his work is highly regarded internationally, especially in quantum computing and quantum thermodynamics.

Impact and Influence 🌍

Dr. Duran has made a considerable impact in both national and international academic circles. His involvement in COST-funded international projects such as Relativistic Quantum Information and Quantum Gravity demonstrates his influence on global quantum research. Additionally, his research in the Yang-Baxter equation and its applications in quantum systems continues to influence the development of quantum technologies.

As a speaker at numerous conferences, including the TÜBİTAK Science Talks and the International Physics Conference, Dr. Duran actively engages with the broader scientific community and public audiences, making significant contributions to public science communication.

Academic Cites 📚

Dr. Duran’s scholarly work has received widespread recognition, with notable publications in prestigious journals like Quantum Information Processing, International Journal of Theoretical Physics, and Chinese Journal of Physics. His work on Quantum Thermometry, Quantum Coherence, and Yang-Baxter Systems has been cited extensively in the field. For instance, his paper “Quantum Thermometry for the Hamiltonians Constructed by Quantum Yang-Baxter Equation” was published in 2025, marking a significant contribution to the theoretical study of quantum systems.

Research Skills 🧠

Duran is a highly skilled researcher in quantum physics, specializing in quantum entanglement, quantum information theory, and open quantum systems. His expertise includes:

  • Yang-Baxter equation applications

  • Quantum dynamics and decoherence

  • Quantum thermometry

  • Entanglement measures and witnesses

  • Quantum state measurements and distinguishability

His research experience spans both theoretical models and experimental implications, often bridging the gap between abstract theory and practical applications in quantum technologies.

Teaching Experience 🎓

As an Associate Professor, Dr. Duran has taught various undergraduate and graduate courses in quantum mechanics, quantum information theory, and mathematical physics. His experience as an educator reflects his dedication to passing on the knowledge and tools to the next generation of physicists. He currently supervises the Master’s Thesis of Kahraman Fatih, who is researching Quantum Dynamics in Open Quantum Systems.

Dr. Duran’s role as Bologna Coordinator also demonstrates his ability to manage international academic programs and ensure alignment with European higher education standards.

Awards and Honors 🏅

Dr. Duran has received several notable accolades during his academic career, including the prestigious 2211-C Priority Fields Scholarship from TÜBİTAK between 2014 and 2017. This award helped him pursue advanced research in quantum information and entanglement, providing significant recognition for his work in priority research fields. He continues to receive recognition for his ongoing contributions to quantum physics through various international collaborations and funding.

Legacy and Future Contributions 🌟

Dr. Duran’s legacy lies in his groundbreaking contributions to quantum entanglement, quantum information theory, and quantum thermodynamics. As a leader in the field of mathematical physics, he has set a solid foundation for future work on quantum computing and relativistic quantum information. His active involvement in international research collaborations and his leadership roles in academic administration position him to make continued contributions to global scientific advancements.

Publications Top Notes

Quantum Thermometry for the Hamiltonians Constructed by Quantum Yang–Baxter Equation

  • Authors: Duran Durgun, Gökhan Çelebi, Adem Türkmen, Beyza Dernek
    Journal: Quantum Information Processing
    Year: 2025

Dynamics of the Quantum Coherence Under the Concatenation of Yang-Baxter Matrix

  • Authors: Duran Durgun
    Journal: Quantum Information Processing
    Year: 2022

Preserving Quantum Correlations via Decoherence Channels with Memory

  • Authors: Duran Durgun
    Journal: Eskişehir Technical University Journal of Science and Technology B – Theoretical Sciences
    Year: 2021

Measurement of ‘Closeness’ and Distinguishability of Quantum States in Yang-Baxter Systems

  • Authors: Duran Durgun
    Journal: International Journal of Theoretical Physics
    Year: 2021

Action in Hamiltonian Models Constructed by Yang-Baxter Equation: Entanglement and Measures of Correlation

  • Authors: Duran Durgun
    Journal: Chinese Journal of Physics
    Year: 2020

 

Quantum Computing

 

Introduction to Quantum Computing:

Quantum computing is a groundbreaking field at the intersection of physics and computer science that harnesses the principles of quantum mechanics to perform computations that were previously considered infeasible by classical computers. Unlike classical bits, which are binary (0 or 1), quantum bits or qubits can exist in multiple states simultaneously due to superposition, enabling quantum computers to solve complex problems exponentially faster. This emerging technology holds immense promise for revolutionizing industries such as cryptography, drug discovery, and optimization.

Quantum Algorithms:

Explore the development of quantum algorithms, including Shor's algorithm for factoring large numbers and Grover's algorithm for searching unsorted databases, which demonstrate the potential quantum advantage.

Quantum Hardware and Qubit Technologies:

Investigate the various physical implementations of qubits, including superconducting circuits, trapped ions, and topological qubits, and their challenges and advantages in quantum computing systems.

Quantum Cryptography:

Delve into quantum cryptography protocols, such as quantum key distribution (QKD), which leverage the unique properties of quantum states to provide ultra-secure communication channels.

Quantum Machine Learning:

Focus on the intersection of quantum computing and machine learning, where quantum algorithms promise to accelerate tasks like optimization, pattern recognition, and data analysis.

Quantum Error Correction:

Examine the critical area of quantum error correction, which seeks to mitigate the effects of qubit errors and maintain the integrity of quantum computations, a fundamental challenge in quantum computing.

 

 

 

Introduction of Chiral spinors and helicity amplitudes Chiral spinors and helicity amplitudes are fundamental concepts in the realm of quantum field theory and particle physics    They play a pivotal
  Introduction to Chiral Symmetry Breaking: Chiral symmetry breaking is a pivotal phenomenon in the realm of theoretical physics, particularly within the framework of quantum chromodynamics (QCD) and the study
Introduction to Effective Field Theory and Renormalization: Effective field theory (EFT) and renormalization are foundational concepts in theoretical physics, particularly in the realm of quantum field theory. They provide a
  Introduction to Experimental Methods: Experimental methods are the backbone of scientific investigation, enabling researchers to empirically explore and validate hypotheses, theories, and concepts. These techniques encompass a wide array
  Introduction to Free Particle Wave Equations: Free particle wave equations are fundamental concepts in quantum mechanics, describing the behavior of particles that are not subject to external forces. These
  Introduction to High Energy Physics: High-energy physics, also known as particle physics, is a branch of science dedicated to the study of the most fundamental building blocks of the
  Introduction to Interactions and Fields: Interactions and fields form the foundation of modern physics, providing the framework for understanding how particles and objects interact with one another and the
  Introduction to Invariance Principles and Conservation Laws: Invariance principles and conservation laws are fundamental concepts in physics that play a pivotal role in understanding the behavior of the physical
  Introduction to Lepton and Quark Scattering and Conservation Laws: Lepton and quark scattering processes are fundamental phenomena in particle physics, allowing us to probe the structure and interactions of
  Introduction to Particle Physics and Cosmology: Particle physics and cosmology are two closely intertwined fields of scientific inquiry that seek to unravel the mysteries of the universe at both