Zhang Xuexue | Experimental methods | Best Researcher Award

Ms. Zhang Xuexue | Experimental methods | Best Researcher Award

Student at Anhui University of Technology, China

Zhangxuexue is a dedicated graduate student at Anhui University of Technology, specializing in the field of absorbing materials. With a passion for materials science and nanotechnology, she has already made meaningful academic contributions during her academic journey. Her standout work involves the development of air/SiO₂@Fe/C yolk-shell nanospheres, which has been published in the prestigious Journal of Alloys and Compounds. Zhangxuexue demonstrates a strong foundation in research methodology and is positioning herself as a rising researcher in electromagnetic wave absorption materials.

Author Profile 

Scopus

Education

Zhangxuexue is currently pursuing her graduate studies at Anhui University of Technology, majoring in Materials Science and Engineering. Her coursework and academic training have provided her with a robust foundation in material synthesis, nanotechnology, and electromagnetic wave interaction. Throughout her studies, she has engaged in laboratory work and collaborative research projects, gaining hands-on experience in materials characterization techniques such as SEM, XRD, and VSM. The interdisciplinary curriculum at Anhui University of Technology has equipped her with both theoretical knowledge and practical skills in designing advanced functional materials. Her thesis work focuses on yolk-shell nanostructures for electromagnetic wave absorption, where she integrates material chemistry with electromagnetic theory.

Professional Experience

As a graduate researcher at Anhui University of Technology, Zhangxuexue has actively participated in experimental and theoretical research related to electromagnetic wave absorbing materials. Her most notable contribution is the successful design and fabrication of air/SiO₂@Fe/C yolk-shell nanospheres, which she co-developed and characterized using advanced techniques. This research resulted in a peer-reviewed publication, marking an early milestone in her academic career. She has also contributed to various lab-based projects involving the synthesis of hybrid materials, dielectric analysis, and the simulation of microwave absorption behavior. Through this work, she has developed a deep understanding of composite design, material interfaces, and the mechanisms behind wave attenuation.

Awards and Honors

While pursuing her graduate studies at Anhui University of Technology, Zhangxuexue has demonstrated academic excellence and research potential. She has received internal recognition from her department for outstanding performance in materials research and laboratory work. Her paper titled Construction of air/SiO₂@Fe/C yolk-shell nanospheres for boosted low-frequency electromagnetic wave absorption, published in the prestigious Journal of Alloys and Compounds, earned her commendation from faculty and peers alike.

Research Focus

Zhangxuexue’s research focus lies in the field of electromagnetic wave absorbing materials, with a specific interest in yolk-shell nanostructures and hybrid composites. Her work targets the development of lightweight, high-performance materials capable of attenuating low-frequency electromagnetic radiation. By manipulating composition, morphology, and interface properties, she aims to enhance the dielectric and magnetic losses of the absorbing materials. Her flagship study involves air/SiO₂@Fe/C yolk-shell nanospheres, designed to optimize internal scattering and impedance matching for efficient absorption. Beyond microwave absorption, she is also interested in the broader implications of these materials for stealth technology, electronic packaging, and electromagnetic interference (EMI) shielding.

Notable Publication

Construction of air/SiO₂@Fe/C yolk-shell nanospheres for boosted low-frequency electromagnetic wave absorption

Authors: Xuexue Zhang¹, Jing Wang¹, Weiwei Wang, Cao Wu, Chang Liu, Hailiang Deng, Liyan Wei, Weihua Gu, Wenbo Du, Yanning Chen, Hongwei Liu, Xun Cao

Journal: Journal of Alloys and Compounds

Year: 2025

Conclusion

Zhangxuexue is an emerging researcher in the field of electromagnetic wave absorbing materials, with a solid academic foundation and a growing record of scientific contribution. Her innovative work on yolk-shell nanostructures demonstrates both creativity and technical skill in material design. As a graduate student at Anhui University of Technology, she has shown strong potential for impactful research and future academic advancement. With a keen interest in nanomaterials and their real-world applications, Zhangxuexue aims to further explore advanced absorption mechanisms and scalable solutions for electromagnetic interference control. Her dedication and accomplishments position her as a promising talent in materials science.

 

 

Suresh Kumar | Experimental methods | Best Researcher Award

Dr. Suresh Kumar | Experimental methods | Best Researcher Award

Associate Professor at MMEC, Maharishi Markandeshwar (Deemed to be University) Mullana | India

Dr. Suresh Kumar is an accomplished Associate Professor (Grade-II) at Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana. With over 11 years of post-Ph.D. experience, he is widely recognized for his research in nanomaterials, dilute magnetic semiconductors, and photocatalysis. A prolific researcher and educator, he has authored 51 research publications, holds six patents, and actively supervises PG and Ph.D. research. His academic presence is validated across platforms such as Scopus, Web of Science, Google Scholar, and Vidwan. He is deeply committed to institutional development, student mentorship, and innovative science education in India.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📘 Early Academic Pursuits

Dr. Suresh Kumar’s academic journey began with a B.Sc. in Non-Medical Sciences from Himachal Pradesh University in 1998. He further pursued M.Sc. Physics (2002), followed by B.Ed and M.Ed degrees, reinforcing his strong foundation in both science and education. His interest in research led him to complete an M.Phil in Physics, and later, a Ph.D. in Physics & Materials Science from Jaypee University of Information Technology in 2014. His doctoral work on transition metal-doped CdS nanofilms marked a turning point, setting the stage for a career rooted in cutting-edge nanotechnology and materials research.

💼 Professional Endeavors

Dr. Kumar has held various academic roles, beginning as a Lecturer in 2007, advancing through positions like Teaching Assistant, Assistant Professor, and Associate Professor. Currently serving at MM(DU), Mullana, his journey reflects a steady progression in leadership, teaching, and research responsibility. He has contributed to institutional quality enhancement by coordinating activities such as NAAC Criteria III, FDPs, curriculum revision, and lab management. His previous affiliations include Jaypee University of Information Technology, Kalpi Institute of Technology, and Shivalik Institute of Engineering & Technology, contributing across UG, PG, and Ph.D. levels.

🔬 Contributions and Research Focus

Dr. Suresh Kumar’s research revolves around II-VI semiconductors, dilute magnetic semiconductors (DMS), photovoltaics, and photocatalysis. His work has pioneered advancements in the green synthesis of nanomaterials, particularly using plant extracts for nanoparticle synthesis, and has practical applications in energy and environmental remediation. His six patents include innovations in nanostructured thin films, solar energy tools, and beekeeping equipment, demonstrating a clear alignment with sustainable and applied science. With consistent publications in indexed journals (WOS, Scopus) and supervision of multiple research scholars, Dr. Kumar’s contributions deeply influence emerging material science trends.

🌍 Impact and Influence

Dr. Kumar’s research has made a measurable global impact, evidenced by 665 citations on Google Scholar, 524 on Web of Science, and 471 on Scopus. His h-index ranges from 11 to 14, reflecting both quality and relevance of his work. He has guided multiple dissertations and Ph.D. theses, and his innovations in solar-powered devices and eco-friendly nanoparticle synthesis have real-world value. He is a regular speaker and session chair at international conferences, such as the Halich Congress, Turkey, and his leadership has helped shape young researchers’ careers, affirming his academic and scientific influence both nationally and abroad.

📚 Academic Cites and Recognition

Dr. Kumar’s scholarly visibility is reinforced through profiles on Google Scholar, Scopus, Web of Science, ORCID, ResearchGate, and Vidwan. His 51 peer-reviewed publications span reputed journals with a combined impact factor of 75.74. These platforms showcase his interdisciplinary reach, from nanotechnology and materials characterization to renewable energy innovations. His academic identity is globally recognized, and his works are often referenced in the domains of thin film physics, green nanotechnology, and semiconductors. This strong digital footprint cements his role as a credible and referenced authority in his research areas.

🧪 Research Skills

Dr. Kumar possesses advanced expertise in material synthesis and characterization techniques, including Chemical Bath Deposition (CBD), vacuum and spin coating, and tools such as XRD, SEM, AFM, TEM, UV-Vis-NIR, EDX, FTIR, and VSM. His experimental precision is matched by a theoretical understanding of optical, structural, and magnetic properties of nanomaterials. He has a strong command over green synthesis methods and is skilled at translating laboratory research into patents and prototypes. His versatile research abilities are applied across diverse sectors—energy, healthcare, agriculture, and education technology making him a valuable asset in interdisciplinary scientific exploration.

🎓 Teaching Experience

Dr. Kumar brings 17+ years of teaching experience, including over 11 years post-Ph.D., spanning UG, PG, and Ph.D. programs. At MM(DU), he teaches B.Sc. Physics (Honors), M.Sc. Physics, and Ph.D. coursework, while also mentoring research students. Known for his engaging, student-centered teaching style, he integrates technology (Moodle, Swayam MOOCs) and hands-on lab work to foster experiential learning. As Lab In-charge and academic coordinator, he ensures high standards in curriculum delivery and laboratory safety. His commitment to academic excellence and student mentorship is a hallmark of his teaching legacy.

🏆 Awards and Honors 

Dr. Suresh Kumar has received numerous accolades, such as the Chanakya Award 2024 and Indo-Global Education Excellence Award 2024 from ICERT. He was honored with a session headship at the Halich Congress, Turkey, and received a Teacher Innovation Award during the pandemic from Rakshita Welfare Society. Earlier in his career, he secured a Best Poster Prize at RTMS-2011 and was awarded a Research Assistantship during his Ph.D. His academic diligence also earned him a merit certificate during B.Ed. These recognitions affirm his dedication to innovation, research impact, and educational leadership.

🔮 Legacy and Future Contributions

Dr. Kumar’s legacy lies in his innovative, sustainable, and interdisciplinary research, as well as his devotion to student growth and institutional advancement. Looking ahead, he aims to secure international collaborations, government-funded research projects, and explore technology transfer opportunities for his patented innovations. He envisions contributing to national science missions through eco-friendly materials research, renewable energy systems, and academic policy reform. His future work will likely expand into translational research, benefiting industries and communities alike. Dr. Kumar’s trajectory marks him as a thought leader and changemaker in the realms of science, innovation, and education.

Publications Top Notes

Solvothermal synthesis of PVP-assisted CuS structures for sunlight-driven photocatalytic degradation of organic dyes

  • Authors: Vishal Dhiman, Suresh Kumar, Abhishek Kandwal, Pankaj Sharma, Ankush Thakur, Sanjay Kumar Sharma
    Journal: Physica B: Condensed Matter
    Year: 2025

Enhanced photoconversion efficiency in dye-sensitized solar cells through Ag and La modified ZnO photoanodes

  • Authors: Aman Kumar, Suresh Kumar, Virender Singh Kundu, Kirti Hooda, Anil Vohra, Suresh Kumar, Mohit Podia, Abhishek Kandwal, Praveen Vummadisetty Naidu
    Journal: Physica Scripta
    Year: 2025

Photocatalytic Activity of ZnO Nanostructures

  • Authors: Anu Kapoor, Naveen Kumar, Suresh Kumar
    Journal: Book Chapter – In: Advanced Nanomaterials for Environmental Applications (Taylor & Francis)
    Year: 2025

Green Synthesis of Nanoparticles using Pea Peel Biomass and Their Assessment on Seed Germination of Tomato, Chilli and Brinjal Crop

  • Authors: Anjali Kanwal, Bikram Jit Singh, Suresh Kumar, Rippin Sehgal, Sushil Kumar Upadhyay, Raj Singh
    Journal: Indian Journal of Agricultural Research
    Year: 2025

A comprehensive review of bismuth, lanthanum and strontium based double perovskites − Unravelling structural, magnetic, and dielectric properties

  • Authors: Jagadish Parsad Nayak, Rohit Jasrotia, Avi Kumar Sharma, Abhishek Kandwal, Pratiksha Agnihotri, Mika Sillanpää, Suman, M. Ramya, Vaseem Raja, Suresh Kumar, et al.
    Journal: Inorganic Chemistry Communications
    Year: 2024

 

Guangdi Zhao | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Guangdi Zhao | Experimental methods | Best Researcher Award

Associate professor at University of Science and Technology Liaoning | China

Guangdi Zhao is an associate professor and currently the associate dean of the School of Materials and Metallurgy. He serves as a doctoral supervisor with a strong academic foundation from Central South University, University of Chinese Academy of Sciences, and University of Science and Technology of China. Since beginning his career in 2017, Zhao has excelled in both research and academic leadership, building a reputable profile in materials science and engineering. His ongoing dedication to advancing metallurgical education and research reflects his commitment to scientific excellence and mentorship.

👨‍🎓Profile

Scopus 

ORCID

🎓 Early Academic Pursuits

Zhao’s academic journey started with a bachelor’s degree in materials science and engineering at Central South University, followed by a master’s in materials science at the University of Chinese Academy of Sciences, and culminated in a Ph.D. at the University of Science and Technology of China. Throughout his studies, he developed a strong foundation in metallurgical processes and materials characterization, which laid the groundwork for his future research. His early training focused on innovative materials design and engineering, preparing him for an impactful academic and research career.

🔬 Professional Endeavors

Since July 2017, Zhao has grown from an early-career researcher to a respected academic leader, currently holding the position of associate dean and doctoral supervisor. He has led 4 vertical and 2 horizontal research projects funded by prestigious sources, including the National Natural Science Foundation of China and provincial science foundations. Zhao also hosts educational reform projects at his institution, illustrating his dual focus on research innovation and teaching improvement. His role expands beyond research to academic leadership and mentoring young scientists.

🛠️ Contributions and Research Focus

Zhao’s research concentrates on materials science and metallurgy, particularly in developing and optimizing metallurgical processes and materials properties. He has published 17 SCI/EI papers as first or corresponding author in internationally recognized journals such as Materials Science & Engineering A and Journal of Alloys and Compounds. His work addresses critical challenges in casting, forging, and metallographic skills, emphasizing defect control, microstructure analysis, and innovative alloy design. Zhao’s contributions push the boundaries of materials engineering for practical industrial applications.

🌟 Impact and Influence

Guangdi Zhao has significantly impacted the materials science community through his research, publications, and mentorship. His leadership on multiple funded projects reflects recognition of his scientific expertise. As an associate dean and committee member in Liaoning Province’s casting and forging industry, he influences both academic and industrial practices. His students’ success in national competitions and his role on editorial boards for “Special Steel” and “CHINA FOUNDRY” amplify his influence, promoting high standards in both research and teaching.

📚 Academic Citations

With 17 SCI/EI-indexed publications, Zhao maintains a strong academic presence, contributing original research to top materials science journals. His first-author and corresponding-author roles in highly cited papers demonstrate leadership in research output. These works are frequently cited by peers, reflecting the relevance and impact of his findings in metallurgical science. Zhao’s growing citation record highlights his ongoing contribution to advancing knowledge and provides a solid foundation for future collaborative research and scholarly influence.

🧰 Research Skills

Zhao possesses advanced expertise in materials characterization, microstructure analysis, and metallurgical process optimization. His skills include designing experimental protocols for alloy development, mastering metallographic techniques, and utilizing scientific methods to improve casting and forging processes. He is proficient in leading multidisciplinary research teams, securing funding, and translating fundamental research into practical industrial applications. Zhao’s technical acumen and problem-solving abilities are key to his success in both research and mentoring.

🎓 Teaching Experience

As an associate professor and doctoral supervisor, Zhao demonstrates strong commitment to education. He has won awards such as the Quality Classroom Award and provincial recognition for excellence in guiding students, particularly in metallographic skills competitions. Zhao actively develops and reforms educational programs, aiming to enhance student learning experiences in materials science. His hands-on mentorship helps students excel academically and competitively, fostering a new generation of researchers with robust technical and theoretical knowledge.

🏅 Awards and Honors

Zhao’s achievements have been recognized through numerous honors, including the prestigious “Hundred, Thousand, Thousand Talents Project” and “Ten Thousand” level candidate status in Liaoning Province. He has received the third prize in the Liaoning Provincial Teacher Teaching Innovation Competition, the Quality Classroom Award, and provincial-level Excellent Guidance Teacher accolades. Additionally, Zhao earned the third prize of Liaoning Provincial Natural Science Academic Achievement Award, underscoring his research excellence and educational impact at both provincial and institutional levels.

🔮 Legacy and Future Contributions

Guangdi Zhao’s legacy is grounded in his dedication to advancing metallurgical science through high-impact research, leadership, and mentorship. As associate dean, he shapes academic policies and fosters innovation in materials education. Zhao’s future contributions are expected to expand international collaborations, explore novel alloy systems, and enhance industrial applications of his research. His commitment to student development ensures a lasting impact on the next generation of scientists, positioning him as a leading figure in China’s materials science community.

Publications Top Notes

  • Title: Effect of homogenization treatment on the microstructure evolution and hot deformation behavior of hard-deformed superalloy GH4975
    Authors: Zhao Guangdi, Zang Ximin, Sun Yixuan, Xin Xin, Li Xue, Wang Lide, Wang Li
    Journal: Materials Science and Engineering: A
    Year: 2025

  • Title: Role of carbides on hot deformation behavior and dynamic recrystallization of hard-deformed superalloy U720Li
    Authors: Guangdi Zhao, Ximin Zang, Yuan Jing, Nan Lü, Jinjiang Wu
    Journal: Materials Science and Engineering: A
    Year: 2021

  • Title: Microstructure and hot ductility behavior of Ni-based superalloy U720Li with boron addition
    Authors: Guang-Di Zhao, Fang Liu, Xi-Min Zang, Wen-Ru Sun
    Journal: Rare Metals
    Year: 2021

  • Title: Role of carbon in modifying solidification and microstructure of a Ni-based superalloy with high Al and Ti contents
    Authors: Guang-di Zhao, Xi-min Zang, Wen-ru Sun
    Journal: Journal of Iron and Steel Research International
    Year: 2021

Jianwen Yang | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Jianwen Yang | Experimental methods | Best Researcher Award

Associate Professor, Master’s Supervisor, Deputy Head of the Physics Department at Shanghai Normal University | China

Dr. Jianwen Yang is an Associate Professor at Shanghai Normal University, holding a Ph.D. in Physical Electronics from Fudan University. His primary research focus lies in oxide semiconductors and information display technologies. With significant experience in addressing instability issues in industrial devices, he has contributed to analyzing the performance of a-IGZO TFTs in companies like TSMC and AUOtronics. His innovative work in n-type tin oxide-based TFTs and indium-free doped tin oxide-based TFTs has led to breakthroughs in the field, providing devices with superior electrical characteristics.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 📚

Dr. Yang’s academic journey began with a solid foundation in Physical Electronics, completing his Ph.D. at Fudan University. During his early studies, he developed a keen interest in the intersection of material science and electronics, which led him to explore oxide thin-film transistors (TFTs) as a promising avenue for future advancements. His focus on new materials and material simplification laid the groundwork for his later innovations in tin oxide-based TFTs, a critical area in the development of modern information display technologies.

Professional Endeavors 💼

Dr. Yang’s professional career has been marked by collaborations with prominent industry leaders like TSMC and AUOtronics, where he contributed to solving the instability challenges in industrialized a-IGZO TFTs. These efforts have provided valuable insights into the performance optimization of thin-film transistors, further driving the industry forward. His participation in national projects, such as those funded by the National Natural Science Foundation of China (NSFC), also highlights his commitment to advancing the field through both academic research and real-world applications.

Contributions and Research Focus 🔬

Dr. Yang’s pioneering research in n-type tin oxide-based TFTs led to the introduction of novel indium-free doped tin oxide materials like SnWO, SnSiO, and SnNiO, which have all exhibited superior electrical characteristics. His work on comparing top/bottom-gate a-IGZO TFTs under varying stress conditions provided valuable insights into threshold voltage shifts and carrier concentration variations, significantly impacting the design and stability of oxide semiconductors in practical applications. He has consistently pushed the boundaries of material research, particularly in the flexible electronics sector.

Impact and Influence 🌍

Dr. Yang’s groundbreaking research has had a profound impact on the development of oxide semiconductor devices, particularly in TFT technology. His innovative approaches have been cited in multiple review articles, and his work continues to influence both academic researchers and industry practitioners. His research on indium-free tin oxide-based TFTs has not only enriched academic literature but also paved the way for more sustainable and efficient solutions in the information display industry. The superior electrical characteristics of his materials have positioned them as viable alternatives to traditional indium-based materials, which are costly and scarce.

Academic Cites 📈

Dr. Yang has published over 38 journals in top-tier scientific databases, including SCI and Scopus, with his work receiving 11 citations. His innovative research has been referenced in numerous review articles, further establishing him as a thought leader in his field. These citations reflect the widespread recognition of his research’s significance, and his publications continue to influence the academic community’s understanding of oxide semiconductors and TFT stability.

Research Skills 🛠️

Dr. Yang’s research skills span a wide range of disciplines, from material science to electronic device engineering. His expertise in thin-film transistor design, instability analysis, and new material development has allowed him to push the envelope in semiconductor research. He is particularly skilled in analyzing the electrical performance of TFTs under various stress conditions, demonstrating an acute understanding of the intricate relationship between material properties and device functionality. Additionally, his work in flexible electronics is a testament to his ability to innovate in emerging areas.

Teaching Experience 👩‍🏫

As an Associate Professor at Shanghai Normal University, Dr. Yang has been involved in educating and mentoring the next generation of scientists and engineers. He brings his extensive research experience into the classroom, enriching students’ learning experiences. Dr. Yang’s teaching focuses on semiconductor physics, material science, and electronics. His dedication to student development is evident in his guidance of graduate students and the collaborative environment he fosters for academic exploration.

Awards and Honors 🏅

Dr. Yang’s contributions have been recognized by several prestigious national research organizations, including the National Natural Science Foundation of China. His research projects, such as the Study on the Instability of Flexible Amorphous SnSiO Thin Film Transistors, have earned him respect in the academic community and have helped elevate Shanghai Normal University‘s status in the field of electronic materials research.

Legacy and Future Contributions 🔮

Dr. Yang’s research legacy lies in his innovative contributions to oxide semiconductor technology and his dedication to finding sustainable solutions for the electronics industry. His ongoing research projects, including his work on the 345GHz Submillimeter Wave Sideband Separation Receiver for LCT Telescope, show his commitment to exploring cutting-edge technologies. Moving forward, Dr. Yang plans to continue refining indium-free tin oxide-based TFTs and explore their industrial scalability. His work has the potential to impact a variety of industries, from flexible displays to advanced sensors, shaping the future of electronic materials.

Publications Top Notes

Exploring soil-buoyancy interactions: experimental designs and educational implications for enhancing students’ scientific inquiry skills

  • Authors: Zijian Gu, Jianwen Yang
    Journal: Physics Education
    Year: 2025

Fast-response IWO/Si heterojunction photodetectors

  • Authors: Xiaochuang Dai, Jianwen Yang, Huishan Wang, Yunxi Luo, Jinying Zeng, Wangzhou Shi, Feng Liu
    Journal: Journal of Physics D: Applied Physics
    Year: 2025

Enhancement of electrical characteristics of SnGaO thin-film transistors via argon and oxygen plasma treatment

  • Authors: Yinli Lu, Xiaochuang Dai, Jianwen Yang, Ying Liu, Duo Cao, Fangting Lin, Feng Liu
    Journal: Vacuum
    Year: 2024

Preparation of chalcogenide perovskite SrHfS3 and luminescent SrHfS3:Eu2+ thin films

  • Authors: Yanbing Han, Jiao Fang, Yurun Liang, Han Gao, Jianwen Yang, Xu Chen, Yifang Yuan, Zhifeng Shi
    Journal: Applied Physics Letters
    Year: 2024

Degradation Behavior of Etch-Stopper-Layer Structured a-InGaZnO Thin-Film Transistors Under Hot-Carrier Stress and Illumination

  • Authors: Dong Lin, Wan-Ching Su, Ting-Chang Chang, Hong-Chih Chen, Yu-Fa Tu, Kuan-Ju Zhou, Yang-Hao Hung, Jianwen Yang, I-Nien Lu, Tsung-Ming Tsai et al.
    Journal: IEEE Transactions on Electron Devices
    Year: 2021

 

 

Marcin Szczęch | Experimental methods | Excellence in Innovation

Assoc. Prof. Dr. Marcin Szczęch | Experimental methods | Excellence in Innovation

AGH University of Krakow | Poland

Marcin Szczęch is a professor at the AGH University of Krakow in Poland, specializing in the study of magnetic fluids (both magnetorheological and ferrofluid) and their applications, particularly in sealing technology. With an academic career dedicated to exploring fluid dynamics and material science, Szczęch’s work has influenced several engineering fields, contributing both to theoretical studies and practical solutions. His groundbreaking contributions, particularly in magnetic fluid sealing, have earned him a reputation as a leading researcher in his field.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Marcin Szczęch’s academic journey began at the AGH University of Krakow, where he earned both his Bachelor’s and Ph.D. in Mechanical Engineering. His Ph.D. thesis focused on the durability of rotary ferrofluid seals in water environments, setting the foundation for his expertise in magnetic fluid applications. After earning his Doctor of Philosophy in 2014, he further advanced his research by exploring the continuity behavior of liquid rings formed by magnetic liquids, which earned him a post-doctoral degree in 2021.

Professional Endeavors 💼

Since 2011, Szczęch has been a faculty member at the AGH University of Krakow, currently holding the position of Professor at the Faculty of Mechanical Engineering and Robotics. In this role, he has not only continued to drive forward his research on magnetic fluids but also contributed significantly to the academic environment by mentoring over 40 students and supervising doctoral research projects. His main research areas focus on magnetorheological and ferrofluids and their use in various industrial applications, especially for fluid seals, vibration isolators, and lubrication systems.

Contributions and Research Focus 🔬

Marcin Szczęch’s research is primarily focused on magnetic fluids and their practical applications. His work has explored the use of these fluids in various contexts, such as magnetic fluid sealing systems, lubrication systems, and vibration isolators. Some of his most notable projects include the development of the Compact Magnetic Fluid Seal (CMFS) and research into biocompatible coatings for medical applications. He has also worked extensively on magnetic fluid lubricated bearings, contributing to the understanding of how these materials operate under magnetic field conditions.

Impact and Influence 🌍

Marcin Szczęch has made a significant impact in both academia and industry. His published research in prominent journals and his extensive patent portfolio (24 patents granted by the Polish Patent Office) underscores his ability to not only advance the scientific understanding of magnetic fluids but also provide practical solutions for industries such as machine design, materials science, and bioengineering. His multidisciplinary research continues to push the boundaries of engineering, positioning him as a key influencer in the development of innovative fluid dynamics solutions.

Academic Cites and Scholarly Recognition 📚

Szczęch’s scholarly work has earned him a strong reputation, as evidenced by his 52 publications on the AGH BaDAP list and 23 indexed in the Web of Science database. With an H-index of 9, Szczęch’s work has been cited numerous times, indicating its relevance and importance in the academic community. His contributions to magnetic fluid dynamics have gained recognition in a wide array of engineering disciplines, cementing his status as a thought leader in the field.

Research Skills and Expertise ⚙️

Szczęch is proficient in a variety of engineering programs such as SolidWorks, AutoCAD, Matlab, Mathcad, Ansys, and LabVIEW, and is well-versed in operating specialized research equipment like rotational rheometers, particle distribution analyzers, and 3D scanners. His expertise in magnetic fluids, coupled with his command of these advanced tools, allows him to carry out both theoretical and experimental studies that bridge the gap between research and industrial application.

Teaching Experience 📖

As a professor, Szczęch teaches a wide range of courses, including Fundamentals of Machine Construction, Machine Design, Modern Engineering Materials, and Computer-Aided Design. His teaching has positively impacted numerous students, with more than 40 thesis works realized under his supervision. He plays an active role in shaping the next generation of engineers and researchers, fostering a deep understanding of both fundamental principles and practical applications of magnetic fluid technologies.

Awards and Honors 🏆

Marcin Szczęch’s work has been recognized through various grants, patents, and research projects. He has received numerous accolades for his contributions to engineering, particularly in the areas of magnetic fluid sealing systems and lubrication technologies. His 24 patents and participation in several innovative research projects underscore his commitment to pushing the envelope of applied research. Additionally, he has been recognized for his role in supervising and mentoring students, further establishing his credibility as an academic leader.

Legacy and Future Contributions 🌱

Marcin Szczęch’s legacy is shaped by his contributions to magnetic fluid technology, especially in the development of advanced seals, lubricants, and vibration isolators. Looking forward, Szczęch is poised to expand his research into sustainable and eco-friendly applications of magnetic fluids, particularly in the context of green engineering and biotechnology. His future contributions could bridge the gap between advanced materials and sustainability, aligning his work with the growing global focus on environmentally conscious engineering solutions.

Publications Top Notes

Research into the pressure capability and friction torque of a rotary lip seal lubricated by ferrofluid

  • Authors: Marcin Szczęch
    Journal: Journal of Magnetism and Magnetic Materials
    Year: 2025

Analysis of a new type of electric power steering gear with two pinions engaged on the same set of teeth on the rack

  • Authors: Marcin Szczęch, Marcin Nakielski, Jaroslaw Bujak
    Journal: Tribologia: teoria i praktyka
    Year: 2024

Comparative study of models and a new model of ferrofluid viscosity under magnetic fields and various temperatures

  • Authors: Marcin Szczęch, Tarasevych Yuliia
    Journal: Tribologia: teoria i praktyka
    Year: 2024

Research into the properties of magnetic fluids produced by milling technology

  • Authors: Wojciech Horak, Marcin Szczęch
    Journal: Tribologia: teoria i praktyka
    Year: 2024

The influence of printing parameters on leakage and strength of fused deposition modelling 3D printed parts

  • Authors: Marcin Szczęch, Wojciech Sikora
    Journal: Advances in Science and Technology Research Journal
    Year: 2024

 

Yidong Zhang | Experimental methods | Best Researcher Award

Dr. Yidong Zhang | Experimental methods | Best Researcher Award

Beijing University of Posts and Telecommunications | China

Yidong Zhang is an emerging scientist specializing in the growth of silicon-based III-V materials and their applications in the high-quality growth of GaAs heteroepitaxial layers. Holding a doctoral degree awarded at Beijing University of Posts and Telecommunications (BUPT) in 2024, he is currently a postdoctoral fellow at the same institution. His research focuses on cutting-edge quantum mechanics and material science, aiming to advance semiconductor technologies through innovative approaches in material growth.

👨‍🎓Profile

Scopus

📚 Early Academic Pursuits

Yidong Zhang’s academic journey began with a keen interest in the intersection of physics and material science, which led him to pursue advanced studies at BUPT. During his doctoral studies, Zhang delved into topics related to material fabrication and quantum mechanics, particularly focusing on heteroepitaxy and substrate preparation for GaAs growth on silicon wafers. His passion for cutting-edge research and technical innovation drove him to explore this challenging area of material science.

💼 Professional Endeavors

As a postdoctoral fellow at BUPT, Yidong Zhang is continuing his work in the field of semiconductor material growth. His professional endeavors are centered on addressing complex challenges in the heteroepitaxial growth of GaAs layers, with a particular emphasis on developing sub-nano streaky surfaces on Si (001) substrates. This innovative research has the potential to significantly improve the quality and performance of III-V semiconductor materials, which are vital for advanced electronics and optoelectronics.

🔬 Contributions and Research Focus

Zhang’s primary research focus is on the fabrication and application of high-quality GaAs heteroepitaxial layers, with an emphasis on substrate surface preparation. The work on the Si (001) substrate with sub-nano streaky surfaces is crucial as it enables better material integration and growth precision, leading to enhanced performance in semiconductor devices. His contributions in the field of silicon-based III-V material growth are poised to advance semiconductor technology, especially in areas such as high-speed electronics and optical communications.

🌍 Impact and Influence

Yidong Zhang’s research is positioned to make a significant impact in the semiconductor industry. His innovative work in substrate preparation and material growth techniques has the potential to influence high-performance electronics, solar cells, LEDs, and laser technologies. Zhang’s approach is likely to transform industry standards by offering a more cost-effective and precise method for growing high-quality semiconductor materials. His work could ultimately enable the development of next-generation devices with enhanced efficiency and performance.

📑 Academic Cites

While Yidong Zhang’s publication record is still emerging, his research has been well-received in the academic community, with growing interest in his work on Si (001) substrate preparation and GaAs heteroepitaxy. As his body of work expands, the citations of his publications are expected to increase, further cementing his position as a leading researcher in the field of material science and semiconductor technology.

🛠️ Research Skills

Dr. Yidong Zhang demonstrates a strong command of several research skills, including experimental design, material characterization, and quantum mechanical simulations. His expertise in substrate preparation techniques, coupled with his knowledge of semiconductor growth processes, equips him with the necessary tools to tackle complex challenges in the field of heteroepitaxy. He has a high level of proficiency in nano-scale fabrication and materials analysis, making him a valuable asset in any research team focused on advanced material science.

👨‍🏫 Teaching Experience

As a postdoctoral fellow, Zhang has had opportunities to mentor graduate students and research assistants at BUPT. His role involves guiding students through complex experimental setups, helping them develop critical research skills, and encouraging a hands-on approach to material science. His commitment to education and knowledge sharing ensures the continued growth of the next generation of researchers in quantum mechanics and material fabrication.

🏅 Awards and Honors

Yidong Zhang’s early academic career has already been marked by several academic achievements, including the award of a Doctoral degree in 2024. While he is at the beginning of his postdoctoral journey, Zhang is a strong contender for recognition in the research community, particularly through awards like the Best Researcher Award. His work is likely to attract further accolades as it continues to push the boundaries of material science and semiconductor technology.

🌱 Legacy and Future Contributions

As Yidong Zhang progresses in his career, his legacy in the field of semiconductor research will likely be defined by his contributions to high-quality material growth techniques and the advancement of silicon-based III-V heteroepitaxy. His future contributions could lead to game-changing advancements in electronics and optoelectronics, as his work has the potential to revolutionize semiconductor integration. Looking ahead, Zhang’s research will continue to influence both academia and industry, laying the groundwork for next-generation technologies.

Publications Top Notes

The Si (001) substrate with sub-nano streaky surface: Preparation and its application to high-quality growth of GaAs heteroepitaxial-layer

  • Authors: Yidong Zhang, Jian Li, Xiaomin Ren, Chuanchuan Li, Xin Wei
    Journal: Applied Surface Science
    Year: 2024

InAs/GaAs quantum-dot lasers grown on on-axis Si (001) without dislocation filter layers

  • Authors: Yongli Wang, Bojie Ma, Jian Li, Xin Wei
    Journal: Optics Express
    Year: January 2023

Rapid and facile characterization of dislocations in cross-sectional GaAs/Si films using electron channeling contrast imaging

  • Authors: Chen Jiang, Hao Liu, Jian Li, Qi Wang
    Journal: Conference Paper
    Year: January 2023

Demonstration of room-temperature continuous-wave operation of InGaAs/AlGaAs quantum well lasers directly grown on on-axis silicon (001)

  • Authors: Chen Jiang, Hao Liu, Jun Wang, Yongqing Huang
    Journal: Applied Physics Letters
    Year: August 2022

 

 

Suparna Kar Chowdhury | Experimental methods | Women Researcher Award

Prof. Suparna Kar Chowdhury | Experimental methods | Women Researcher Award

Jadavpur University | India

Dr. Suparna Kar Chowdhury is a distinguished Professor in the Electrical Engineering Department at Jadavpur University, Kolkata, India. With a career spanning over three decades, she has earned recognition for her deep expertise in machine analysis and design. As a senior IEEE member and an active volunteer, Dr. Chowdhury is a leading figure in both academic and professional circles in Electrical Engineering.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Chowdhury’s journey in Electrical Engineering began when she graduated in 1987 from Jadavpur University, Kolkata. She continued to excel academically, earning her M.Tech degree in Electrical Engineering from the prestigious Indian Institute of Technology (IIT), Kharagpur, in 1989. Her commitment to learning and her strong academic foundation led her to pursue a Ph.D. in Electrical Engineering from Jadavpur University in 2000, where she expanded her knowledge in advanced topics within the field.

Professional Endeavors 💼

After her graduation, Dr. Chowdhury briefly worked as an engineer at M/S M N Dastur & Co., gaining practical industry experience. In 1990, she began her academic career as an Assistant Professor at Jadavpur University and quickly gained recognition for her contributions to the academic community. Over the years, she has climbed the ranks, ultimately achieving the position of Professor in the Electrical Engineering Department, where she continues to inspire future engineers.

Contributions and Research Focus 🔬

Dr. Chowdhury’s research focus lies in machine analysis and design. She has made significant contributions to the advancement of these fields, publishing around 40 papers in National and International conferences and journals. Her research is aimed at improving the design and efficiency of electrical machines, and she has played a key role in shaping the landscape of machine engineering through her innovative studies.

Impact and Influence 🌍

As a senior member of IEEE (USA) and a leader in the IEEE Kolkata Section, Dr. Chowdhury has had a substantial impact on the global engineering community. Her leadership roles, including serving as section secretary, treasurer, and chair of the Power & Energy chapter, have allowed her to influence the growth and development of the IEEE Kolkata Section. Through these leadership positions, Dr. Chowdhury has contributed to expanding the reach of IEEE’s initiatives in India and globally.

Academic Cites 📑

With a vast publication record and extensive involvement in academic circles, Dr. Chowdhury has contributed to numerous research endeavors, producing impactful work that has shaped the current understanding of machine design and analysis. Her publications have garnered attention within the academic community, and her research insights continue to influence future studies in the field.

Research Skills 🔧

Dr. Chowdhury’s research skills encompass advanced machine design, electrical system modeling, and optimization techniques. She has worked on complex analytical methods to solve engineering challenges, contributing to her reputation as an expert in the field of electrical machine analysis. Her ability to bridge theoretical knowledge with practical application has made her research highly valuable to both academia and industry.

Teaching Experience 🏫

As an Assistant Professor and later as a Professor, Dr. Chowdhury has been an influential educator, guiding students in the Electrical Engineering Department at Jadavpur University. With over three decades of teaching experience, she has mentored numerous students and has successfully supervised five Ph.D. theses and sixteen M.E. theses. Her commitment to education and student development remains a key part of her legacy.

Awards and Honors 🏅

Dr. Chowdhury has received multiple accolades for her academic and professional contributions. Notably, her status as a senior member of IEEE and her leadership roles within the IEEE Kolkata Section underscore her commitment to advancing electrical engineering. These honors reflect her dedication and passion for the field, as well as her ability to inspire others.

Legacy and Future Contributions 🌱

Dr. Suparna Kar Chowdhury’s legacy lies in her remarkable impact on machine analysis and design in Electrical Engineering, as well as her leadership within the IEEE community. She has left a lasting mark on both her students and colleagues through her innovative research, mentorship, and service. Looking forward, Dr. Chowdhury is expected to continue advancing research in machine analysis, contributing to sustainable technologies, and inspiring the next generation of engineers. Her continued commitment to academia and research excellence will undoubtedly shape the future of Electrical Engineering.

Publications Top Notes

  • Estimation of Induction Motor Equivalent Circuit Parameters and Losses from Transient Measurement
    Authors: Diptarshi Bhowmick, Suparna Kar Chowdhury
    Year: Dec 2024

  • A New Nonisolated Bidirectional DC-DC Converter with High Voltage Conversion Ratio
    Authors: Supratik Sikder, Debashis Chatterjee, Suparna Kar Chowdhury
    Year: Dec 2023

  • Performance analysis of different rotor configuration of LSPMSM for Electric Vehicles
    Authors: Mousumi Jana Bala, Chandan Jana, Suparna Kar Chowdhury, Nirmal Kumar Deb
    Year: Dec 2022

  • Sensor Less Performance Estimation of Induction Motor
    Authors: Diptarshi Bhowmick, Suparna Kar Chowdhury
    Year: Dec 2022

  • Performance and Temperature Estimation of Induction Motor from Transient Measurement
    Authors: Diptarshi Bhowmick, Suparna Kar Chowdhury
    Year: Dec 2020