Ajit Bhat | Nuclear Physics | Best Researcher Award

Mr. Ajit Bhat | Nuclear Physics | Best Researcher Award

R&D Mechanical Engineer at Oak Ridge National Lab | United States

Ajit Bhat is an accomplished R&D Mechanical Engineer with specialized expertise in aerospace engineering, mechanical systems design, and fusion energy technologies. Currently contributing to advanced research at Oak Ridge National Laboratory, Ajit brings a robust blend of technical proficiency, innovative thinking, and hands-on experience across national labs, industry, and academic research projects.

👨‍🎓Profile

Scopus

Orcid

🎓 Early Academic Pursuits

Ajit began his academic journey at the University at Buffalo, SUNY, where he earned a B.Sc. in Mechanical and Aerospace Engineering with Cum Laude honors. He furthered his education at the University of Michigan, Ann Arbor, completing his Master’s in Aerospace Engineering in December 2017. His studies focused on fluid dynamics, orbital mechanics, and control systems, laying the foundation for his future contributions to aerospace and energy sectors.

🧑‍💼 Professional Endeavors

Ajit’s career showcases an impressive diversity of roles in high-impact institutions. At Oak Ridge National Laboratory, he has been instrumental in supporting multiple departments with mechanical and robotics system designs, including the successful deployment of a gantry system for remote handling and the development of a 3D-printed tungsten divertor for fusion reactors. At the Institute of Energy Studies, North Dakota, he led projects in carbon capture technology, involving fluid flow analysis, structural integrity assessments, and data acquisition system troubleshooting. While at Piper Aircraft Inc., Ajit designed landing gear systems and aircraft components, managed hydraulic actuator issues, and streamlined procurement processes. His time at Lawrence Berkeley National Lab included remodelling infrared beamline structures and radiation shielding in accelerator facilities, demonstrating his ability to adapt across specialized domains.

🔬 Contributions and Research Focus

Ajit’s research contributions span several frontier domains. He has made significant strides in fusion energy systems, particularly through the design of a magnetic coupler for the ITER project and the creation of 3D-printed plasma-facing components. His expertise in computational fluid dynamics (CFD), finite element analysis (FEA), and thermal systems supports his broader focus on energy sustainability and mechanical innovation. Ajit’s background in space systems engineering is evident through his work on a NASA-funded CubeSat project, where he led the mechanical subsystem and collaborated with interdisciplinary teams to meet mission requirements.

🌍 Impact and Influence

Ajit’s professional influence is notable in sectors that demand precision engineering and innovation. His work in fusion research at ORNL supports global efforts in clean energy, while his earlier roles in aircraft design and radiation infrastructure contribute to national aerospace and nuclear facilities. His participation in legacy waste cleanup initiatives and carbon capture processes reflect his commitment to sustainability and environmental engineering.

📚 Academic Citations and Publications

Ajit has co-authored impactful publications such as “Electrostatic Lubricant Filter Design Study”, presented at the 2022 IEEE CEIDP Conference, and “Work Cell Development for Legacy Waste Cleanup in Oak Ridge”, presented at WM Symposia 2024. Additionally, he delivered a technical talk titled “Design and Analysis of an Integrated Additively Manufactured Test Article for Plasma Facing Component” at the 26th Technology of Fusion Energy Conference (TOFE), reflecting his growing presence in the academic and research community.

🧠 Research Skills

Ajit possesses advanced technical competencies in CAD software (PTC Creo, NX, AutoCAD, Inventor), simulation tools (ANSYS Fluent, Abaqus, XFLR5), and programming languages (MATLAB, C++, LabView). His hands-on capabilities with 3D printing, lathe operations, and manual machining tools complement his simulation expertise, making him a well-rounded engineer capable of bridging theory and practice in high-tech environments.

👨‍🏫 Teaching and Mentorship Experience

During his time at the University of Michigan, Ajit served as a Research Assistant, managing mechanical subsystems in a NASA CubeSat project. His role involved interdisciplinary collaboration, design validation, and project communication, which naturally required mentoring undergraduate and graduate team members. While not a formal teaching role, this experience demonstrates his ability to guide and lead technical teams in educational settings.

🏆 Awards and Honors

Ajit graduated Cum Laude from SUNY Buffalo and has been selected for key roles at some of the most prestigious national laboratories in the U.S., including ORNL and LBNL. While the current record does not include individual academic awards, his selection for critical national-level projects and technical leadership in research affirms his professional recognition and excellence.

🧭 Legacy and Future Contributions

Ajit Bhat is on a promising trajectory to leave a lasting legacy in fusion energy research, additive manufacturing, and cross-sector mechanical engineering. As global interest in sustainable technologies grows, his interdisciplinary expertise positions him as a future leader in both research innovation and technical implementation. With a strong foundation, growing publication record, and deep technical insight, Ajit’s contributions are expected to expand and influence next-generation energy and aerospace systems.

 

Devika Phukan | The matter particles | Women Researcher Award

Dr. Devika Phukan | The matter particles | Women Researcher Award

Associate Professor at The Assam Royal Global University, Guwahati | India

Dr. Devika Phukan is a distinguished physicist and professor with a career spanning over 25 years in the domain of optics, photonics, and laser spectroscopy. Currently serving at Royal Global University, she is widely recognized for her research excellence, teaching dedication, and mentorship of doctoral scholars. Her journey is an inspiring example of a woman researcher who has significantly contributed to scientific advancement in applied physics.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📚 Early Academic Pursuits

Dr. Phukan began her academic journey at HFC Model School, Namrup (now BVFCL), followed by higher secondary education at Namrup Higher Secondary School. Her passion for physics took shape at Gargaon College, where she completed her B.Sc. in Physics, later pursuing M.Sc., M.Phil., and Ph.D. in Physics from Dibrugarh University. This solid academic foundation laid the groundwork for her career in laser physics and spectroscopy.

🧑‍🏫 Professional Endeavors

Dr. Phukan embarked on her professional career at Salt Brook Academy (1999–2001), later holding positions at Sri Revanna Siddheswaraya Institute of Technology and Rajiv Gandhi Institute of Technology, Bangalore. Since 2009, she has been an integral part of Royal Global University, contributing as a senior faculty member and researcher. Her professional trajectory reflects steady growth, leadership, and commitment to academic excellence.

🔬 Contributions and Research Focus

Dr. Phukan’s research interests include laser and nonlinear optics, optical communications, optoelectronics, and photonics, with a particular emphasis on laser spectroscopy and photonic crystal fibers. She has authored 13 peer-reviewed journal articles and several conference papers that address cutting-edge topics like soliton pulse propagation, stimulated Raman scattering, and Brillouin threshold analysis. Her recent work in ultrashort optical pulse transmission in photonic crystal fibers demonstrates her contributions to emerging technologies in fiber optics and communication systems.

🌐 Impact and Influence

Her work is cited in reputed journals such as the Journal of Optics, Pramana – Journal of Physics, and Asian Journal of Physics. Through her mentorship, two Ph.D. scholars have been awarded their degrees, while six more are currently pursuing research under her guidance. This highlights her influence in shaping the next generation of physicists and her ability to create a vibrant research ecosystem.

📈 Academic Citations and Research Skills

Dr. Phukan’s scholarly output reflects a strong command over experimental and computational techniques in nonlinear optics. While citation metrics (such as h-index) are not listed here, her consistent publication in peer-reviewed journals and collaborations with research scholars illustrate high research productivity and relevance. Her ability to translate complex physical phenomena into practical simulations and fiber models underscores her technical depth and analytical skills.

🏫 Teaching Experience

With expertise in Engineering Physics, Electrodynamics, Laser Physics, Optoelectronics, and Atomic & Molecular Physics, Dr. Phukan brings a rich interdisciplinary perspective to the classroom. Her teaching approach combines fundamental theory with real-world applications, making her courses engaging and highly relevant to modern physics and engineering students.

🏆 Awards and Honors

In recognition of her outstanding contribution to education, Dr. Phukan received the Best Faculty Award in 2015 from Gyan Sagar Institution (now Royal Global University). This honor reflects her excellence in teaching, research guidance, and dedication to institutional development.

🌟 Legacy and Future Contributions

Dr. Devika Phukan continues to inspire through her intellectual rigor, mentorship, and commitment to scientific innovation. She stands as a role model for women in STEM, particularly in physics and photonics. With her ongoing research, active Ph.D. supervision, and dedication to teaching, she is poised to make further groundbreaking contributions in fiber optics and laser-based technologies.

Publications Top Notes

Analysis of the effect of Stimulated Brillouin Scattering Threshold (SBST) and Stokes power in single mode optical fibre of different characteristic profile by simulation

  • Authors: Partha Pratim Borah, Devika Phukan, Anurup Gohain Barua
    Journal: Journal of Optics
    Year: 2025

Modelling and analysis of amplitude, spatial domain, spatial grids, width and time steps of soliton wave with reference to energy

  • Authors: Bidish Borah, Devika Phukan, Anurup Gohain Barua
    Journal: Journal of Optics
    Year: 2025

Exploring Structural and Propagation Features of Photonic Crystal Fibers for Superior Ultrashort Pulse Delivery

  • Authors: Priyanka Talukdar, Devika Phukan
    Journal: Journal of Optics
    Year: 2025

A Comparative Analysis of Basic and Enhanced Hole Structures in Photonic Crystal Fibers

  • Authors: P. Talukdar, D. Phukan
    Journal: Journal of Optics
    Year: 2024

A Comparative Exploration of Femtosecond Optical Pulse Propagation in Hollow Core Photonic Crystal Fiber and Optical Fiber

  • Author: Devika Phukan
    Journal: Webology
    Year: 2023

 

 

Jerzy Dryzek | The matter particles | Excellence in Research Award

Prof. Dr. Jerzy Dryzek | The matter particles | Excellence in Research Award

Professor at Institute of Nuclear Physics PAS | Poland

Prof. Jerzy Dryzek is a renowned physicist specializing in solid state physics and positron annihilation spectroscopy, with over four decades of academic and research experience. A pioneer in experimental physics in Poland, he has played a central role in developing advanced laboratory techniques in the field, particularly at the Institute of Nuclear Physics PAN in Kraków. His extensive international collaborations and leadership in scientific projects underscore his lasting influence in materials science and nuclear physics.

👨‍🎓Profile

Scopus

ORCID

📚 Early Academic Pursuits

Dr. Dryzek embarked on his academic journey with a Master’s degree from the Academy of Mining and Metallurgy in Kraków (1975–1980), where he focused on the “Technology of thin films.” He simultaneously pursued another Master’s in Nuclear Physics from the Jagiellonian University in Kraków (1977–1981), conducting a thesis on the “Measurement of the positron lifetime in silver films.” His deep interest in positron-related phenomena led to his Ph.D. (1981–1986) in Solid State Physics, with a dissertation titled “Electrical conductivity and electrical properties of thin metallic films (Au, Ag, Cu).”

🧪 Professional Endeavors

Since 1987, Dr. Dryzek has held a permanent position at the Institute of Nuclear Physics in Kraków, where he has been instrumental in establishing and expanding the positron annihilation laboratory. His international exposure includes scientific visits to Münster University, Germany, Helsinki University of Technology, Finland, Texas Christian University, USA, and collaborative research at Chalmers University of Technology, Sweden, and KEK in Tsukuba, Japan. He also served as Professor at the University of Zielona Góra (2005–2009) and Opole University (2009–2014).

🔬 Contributions and Research Focus

Dr. Dryzek’s research focus lies in positron annihilation spectroscopy, with special emphasis on pulsed positron beams, two-dimensional Doppler broadening, and positron annihilation in flight. He has led multiple national and international research projects, exploring grain boundaries, resonance trapping, and nonhomogeneous systems. His innovative work includes the construction of Doppler broadening spectrometers and advancing methods of studying subsurface zones in metallic alloys.

🌍 Impact and Influence

Dr. Dryzek’s impact extends beyond laboratory research. Through his leadership in the Centre of Excellence ADREM, he contributes to applying physics to human health and environmental safety. His collaborative initiatives have fostered German-Polish scientific cooperation, and his lectures and research work have enriched institutions in Europe, the USA, and Japan. His influence is particularly notable in shaping positron annihilation research infrastructure in Poland.

📖 Academic Cites

Dr. Dryzek’s work has been widely cited in peer-reviewed journals and international conferences, especially in the context of tribology, surface studies, and positron annihilation in condensed matter. His habilitation thesis in 2001, titled “Positron annihilation characteristics in condensed matter,” laid the foundation for his recognition as an Assistant Professor and later Full Professor in 2012.

🛠️ Research Skills

Dr. Dryzek demonstrates expertise in experimental physics, with deep proficiency in positron annihilation techniques, Doppler spectroscopy, and positron beam construction. He is also skilled in research project management, having led numerous scientific grants, coordinated interdisciplinary networks such as POSMAT, and conducted technology-based studies on materials like polymers, metals, and minerals.

👨‍🏫 Teaching Experience

Alongside research, Dr. Dryzek has actively contributed to academic teaching, notably as a lecturer in physics at the Pedagogical University in Kraków (1990–1992) and as a visiting professor at international institutions. He played a significant role in educating students from Münster University, fostering cross-border scientific knowledge exchange under the German-Polish Collaboration framework.

🏆 Awards and Honors

Among his recognitions are several competitive research grants awarded by the Committee of Scientific Research in Poland, European Commission (COST Programs), and German-Polish Foundations. His leadership in teaching grants, instrument development, and joint international projects reflects the high regard of his contributions to science and education.

🔮 Legacy and Future Contributions

With a legacy rooted in scientific innovation, academic mentorship, and international collaboration, Dr. Dryzek has established himself as a pioneer in positron physics. His work continues to inspire future generations, and his efforts in network coordination, grant acquisition, and technical development ensure ongoing contributions to the fields of solid-state physics and material science. His vision for advancing positron annihilation studies remains a guiding light for both theoretical and applied physics communities.

Publications Top Notes

Superior barrier performance, mechanical properties and compostability in relation to supramolecular structure of renewable based poly(trimethylene furanoate) modified with suberic acid

  • Authors: A. Zubkiewicz, A. Szymczyk, J. Dryzek, V.M. Siracusa, N. Lotti
    Journal: European Polymer Journal
    Year: 2025

Positronium Formation on the Rhenium Surface Studied by Slow Positron Measurements

  • Authors: J. Dryzek, M.O. Liedke, M. Butterling, E. Dryzek
    Journal: Physica Status Solidi (B) Basic Research
    Year: 2025

Influence of flexible segment length on the phase structure and properties of poly(hexamethylene 2,5-furandicarboxylate)-block-biopolytetrahydrofuran copolymers

  • Authors: S. Paszkiewicz, K. Walkowiak, I. Irska, Z.J. Rozwadowski, J. Dryzek
    Journal: Journal of Applied Polymer Science
    Year: 2024

Positron Annihilation and EBSD Studies of Subsurface Zone Created During Friction in Vanadium

  • Authors: J. Dryzek, M.X. Wróbel
    Journal: Journal of Tribology
    Year: 2023

Influence of the positron implantation profile on the study of the defect depth distribution by the positron annihilation technique

  • Authors: J. Dryzek
    Journal: Journal of Applied Physics
    Year: 2023