Soumia CHQONDI | Interactions and fields | Best Researcher Award

Prof. Soumia CHQONDI | Interactions and fields | Best Researcher Award

Chouab Doukkali University | Morocco

Prof. Soumia CHQONDI is a Moroccan physicist and Assistant Professor at the Faculty of Sciences, El Jadida, affiliated with the Université Chouaib Doukkali. She is also an active member of the Laboratoire d’Innovation en Sciences, Technologies et Modélisation (ISTM). With a Doctorate in Physics obtained through a cotutelle program between Université Moulay Ismail (Morocco) and Université Pierre et Marie Curie (France), she has dedicated her academic journey to theoretical and computational studies of quantum systems. Her work on laser-atom interactions has earned her recognition through international publications, conference presentations, and collaborations across the physics community.

Profile

Scopus

Early Academic Pursuits

Soumia began her academic career with a Baccalauréat in Mathematical Sciences, followed by a DEUG in Physics and Chemistry at Université Moulay Ismail, Meknès. She pursued a Licence in Fundamental Physics (Electronics) and a Master in Applied Physics, specializing in Laser & Nanophysics. Her academic excellence led her to a doctoral program in cotutelle between two prestigious institutions in Morocco and France, where she explored quantum systems in intense laser fields. These early stages shaped her scientific rigor, developed her analytical thinking, and laid the foundation for a promising career in theoretical physics and simulation.

Professional Endeavors

Since October 2020, Prof. Chqondi serves as an Assistant Professor at the Faculty of Sciences of El Jadida, where she teaches and supervises research. From 2016 to 2020, she was a scientific researcher at the Laboratoire de Physique du Rayonnement et des Interactions Laser-Matière in Meknès, where she conducted numerical simulations of time-dependent atomic systems. Her career began in secondary education, teaching computer science from 2006 to 2019. Her multidisciplinary expertise, spanning informatics, applied physics, and quantum simulations, reflects a commitment to both pedagogical innovation and scientific advancement within and beyond the university environment.

Contributions and Research Focus

Prof. Chqondi’s research focuses on theoretical atomic physics, particularly laser-matter interactions, quantum ionization dynamics, and photoelectron angular distributions in atoms exposed to two-color and high-frequency laser fields. She has co-authored 8+ peer-reviewed articles, contributed to international book chapters, and presented at numerous conferences. Her work bridges fundamental quantum mechanics with advanced numerical modeling, offering insights into ultrafast electronic processes and photoionization phenomena. Using TDSE (time-dependent Schrödinger equation) and Floquet theory, she investigates non-linear laser interactions, essential for the development of next-generation optical technologies and quantum-based innovations.

Impact and Influence

Prof. Chqondi’s research has contributed to a deeper understanding of quantum systems in strong laser fields, impacting both theoretical frameworks and simulation techniques in laser physics. Her work has been featured in indexed journals such as Atoms, Modern Physics Letters A, and Turkish Journal of Physics. She collaborates with national and international scholars, notably Prof. Abdelkader Makhoute, enhancing scientific diplomacy between Moroccan and European institutions. Through her roles in teaching, publication, and mentoring, she inspires emerging researchers, helping bridge the gap between classical education and cutting-edge physics research in the Arab and African academic communities.

Academic Citations

Prof. Chqondi’s scientific publications are cited in peer-reviewed international journals, reflecting her contribution to specialized fields such as photoionization, laser-assisted electron dynamics, and numerical physics simulations. While exact citation metrics (e.g., h-index) are not provided, her consistent presence in indexed and impact-factor journals, including Nonlinear Dynamics and Systems Theory, underscores her academic credibility. Her co-authored articles are frequently referenced in studies exploring quantum dynamics, laser spectroscopy, and semi-classical theories. As her work gains further recognition and is integrated into broader research, its citation count and visibility are likely to grow substantially.

Research Skills

Prof. Chqondi demonstrates strong computational and theoretical skills. She is proficient in Fortran, Maple, LaTeX, and OriginPro, vital tools in quantum simulation and data analysis. Her research involves solving TDSE, modeling photoelectron spectra, and applying Floquet theory to atomic systems. She is skilled in Microsoft Office, Linux/Windows, and has experience with statistical analysis using Excel. Her scientific rigor is matched with literature review expertise, scientific writing, and effective use of academic databases. She also incorporates modern tools like Urkund for plagiarism detection, ensuring academic integrity in research and publishing.

Teaching Experience

Prof. Chqondi has over 15 years of experience in education, from secondary teaching in computer science to university-level physics instruction. Since 2020, she has taught undergraduate and graduate courses at Université Chouaib Doukkali, focusing on quantum physics, simulation techniques, and scientific computing. She also contributes to the mentorship of research students, supporting project development and thesis supervision. Her approach combines foundational theory with modern simulation practices, bridging gaps between classroom learning and applied physics research. She also integrates digital tools and interactive learning environments to enhance student engagement and scientific curiosity.

Awards and Honors

Although specific awards or fellowships are not listed, Prof. Chqondi’s selection for a cotutelle Ph.D. program between Morocco and France indicates early recognition of her potential. Her invited participation in prestigious international conferences and summer schools, such as in Paris and Tangier, highlights her academic merit. Her paper presentations at major events like SPIn2022 and Moroccan ADM 2023 also underline her standing in the field. Her contributions have earned her respect among scientific peers, and she remains a strong candidate for academic distinctions such as the Best Researcher Award, based on her consistent output and specialization.

Legacy and Future Contributions

Prof. Chqondi is poised to become a leading voice in theoretical physics and computational laser-matter interaction studies in Morocco and the MENA region. With a foundation in quantum dynamics and a commitment to scientific integrity, she continues to mentor students, publish impactful research, and build interdisciplinary collaborations. Her future work may extend into quantum control systems, ultrafast optics, or machine learning in physics simulations. As an educator and researcher, she is contributing to a new generation of Moroccan physicists, and her legacy will likely include pioneering simulation techniques and advancing quantum education in developing contexts.

Publications Top Notes

Controlling the Ionization Dynamics of Argon Induced by Intense Laser Fields: From the Infrared Regime to the Two-Color Configuration

  • Authors: Soumia Chqondi, Souhaila Chaddou, Ahmad Laghdas, Abdelkader Makhoute
    Journal: Atoms
    Year: 2025

Photoelectron angular distributions for photoionization of argon by two-color fields

  • Authors: Soumia Chqondi, Souhaila Chaddou, Abdelkader Makhoute
    Journal: Modern Physics Letters A
    Year: 2024

A New Feedback Control for Exponential and Strong Stability of Semi-Linear Systems with General Decay Estimates

  • Authors: M. Chqondi, S. Chqondi, K. Tigma, Y. Akdim
    Journal: Nonlinear Dynamics and Systems Theory
    Year: 2024

Theoretical description of the two-color photoelectron spectra process of hydrogen: comparison between TDSE calculation and Kroll and Watson approach

  • Authors: Souhaila Chaddou, Soumia Chqondi, Abdelmalek Taoutioui, Abdelkader Makhoute
    Journal: Turkish Journal of Physics
    Year: 2019

Numerical simulation of photoionization processes of the atomic hydrogen by a Ti: Saphir laser

  • Authors: S. Chaddou, S. Chqondi, A. Makhoute
    Journal: International Journal of Photonics and Optical Technology
    Year: 2017

 

 

Devika Phukan | The matter particles | Women Researcher Award

Dr. Devika Phukan | The matter particles | Women Researcher Award

Associate Professor at The Assam Royal Global University, Guwahati | India

Dr. Devika Phukan is a distinguished physicist and professor with a career spanning over 25 years in the domain of optics, photonics, and laser spectroscopy. Currently serving at Royal Global University, she is widely recognized for her research excellence, teaching dedication, and mentorship of doctoral scholars. Her journey is an inspiring example of a woman researcher who has significantly contributed to scientific advancement in applied physics.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📚 Early Academic Pursuits

Dr. Phukan began her academic journey at HFC Model School, Namrup (now BVFCL), followed by higher secondary education at Namrup Higher Secondary School. Her passion for physics took shape at Gargaon College, where she completed her B.Sc. in Physics, later pursuing M.Sc., M.Phil., and Ph.D. in Physics from Dibrugarh University. This solid academic foundation laid the groundwork for her career in laser physics and spectroscopy.

🧑‍🏫 Professional Endeavors

Dr. Phukan embarked on her professional career at Salt Brook Academy (1999–2001), later holding positions at Sri Revanna Siddheswaraya Institute of Technology and Rajiv Gandhi Institute of Technology, Bangalore. Since 2009, she has been an integral part of Royal Global University, contributing as a senior faculty member and researcher. Her professional trajectory reflects steady growth, leadership, and commitment to academic excellence.

🔬 Contributions and Research Focus

Dr. Phukan’s research interests include laser and nonlinear optics, optical communications, optoelectronics, and photonics, with a particular emphasis on laser spectroscopy and photonic crystal fibers. She has authored 13 peer-reviewed journal articles and several conference papers that address cutting-edge topics like soliton pulse propagation, stimulated Raman scattering, and Brillouin threshold analysis. Her recent work in ultrashort optical pulse transmission in photonic crystal fibers demonstrates her contributions to emerging technologies in fiber optics and communication systems.

🌐 Impact and Influence

Her work is cited in reputed journals such as the Journal of Optics, Pramana – Journal of Physics, and Asian Journal of Physics. Through her mentorship, two Ph.D. scholars have been awarded their degrees, while six more are currently pursuing research under her guidance. This highlights her influence in shaping the next generation of physicists and her ability to create a vibrant research ecosystem.

📈 Academic Citations and Research Skills

Dr. Phukan’s scholarly output reflects a strong command over experimental and computational techniques in nonlinear optics. While citation metrics (such as h-index) are not listed here, her consistent publication in peer-reviewed journals and collaborations with research scholars illustrate high research productivity and relevance. Her ability to translate complex physical phenomena into practical simulations and fiber models underscores her technical depth and analytical skills.

🏫 Teaching Experience

With expertise in Engineering Physics, Electrodynamics, Laser Physics, Optoelectronics, and Atomic & Molecular Physics, Dr. Phukan brings a rich interdisciplinary perspective to the classroom. Her teaching approach combines fundamental theory with real-world applications, making her courses engaging and highly relevant to modern physics and engineering students.

🏆 Awards and Honors

In recognition of her outstanding contribution to education, Dr. Phukan received the Best Faculty Award in 2015 from Gyan Sagar Institution (now Royal Global University). This honor reflects her excellence in teaching, research guidance, and dedication to institutional development.

🌟 Legacy and Future Contributions

Dr. Devika Phukan continues to inspire through her intellectual rigor, mentorship, and commitment to scientific innovation. She stands as a role model for women in STEM, particularly in physics and photonics. With her ongoing research, active Ph.D. supervision, and dedication to teaching, she is poised to make further groundbreaking contributions in fiber optics and laser-based technologies.

Publications Top Notes

Analysis of the effect of Stimulated Brillouin Scattering Threshold (SBST) and Stokes power in single mode optical fibre of different characteristic profile by simulation

  • Authors: Partha Pratim Borah, Devika Phukan, Anurup Gohain Barua
    Journal: Journal of Optics
    Year: 2025

Modelling and analysis of amplitude, spatial domain, spatial grids, width and time steps of soliton wave with reference to energy

  • Authors: Bidish Borah, Devika Phukan, Anurup Gohain Barua
    Journal: Journal of Optics
    Year: 2025

Exploring Structural and Propagation Features of Photonic Crystal Fibers for Superior Ultrashort Pulse Delivery

  • Authors: Priyanka Talukdar, Devika Phukan
    Journal: Journal of Optics
    Year: 2025

A Comparative Analysis of Basic and Enhanced Hole Structures in Photonic Crystal Fibers

  • Authors: P. Talukdar, D. Phukan
    Journal: Journal of Optics
    Year: 2024

A Comparative Exploration of Femtosecond Optical Pulse Propagation in Hollow Core Photonic Crystal Fiber and Optical Fiber

  • Author: Devika Phukan
    Journal: Webology
    Year: 2023

 

 

SHARJEEL AHMED | Particle Experiments | Best Researcher Award

Dr. SHARJEEL AHMED | Particle Experiments | Best Researcher Award

PhD Researcher at University of Science and Technology China (USTC), Chinese Academy of Science,Institute of Metal Research (CAS, IMR) | China

Dr. Sharjeel Ahmed is a PhD Researcher at the University of Science and Technology China (USTC), Chinese Academy of Science, Institute of Metal Research (CAS, IMR), China. He completed his master’s degree from Donghua University (DHU), China, and earned his PhD from USTC. His research specializes in photoresponsive nanomaterials and smart fluorescence coatings, focusing on oxygen-deficient nanomaterials for photocolorswitching properties and early-stage corrosion detection.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Ahmed’s academic journey began at Donghua University (DHU), where he obtained his master’s degree. Building on this foundation, he continued his research at USTC, a leading institution in nanotechnology and materials science. His early academic work laid the groundwork for his specialization in nanomaterials and coating technologies that can respond to environmental triggers like light, opening new avenues in corrosion detection and smart materials.

Professional Endeavors 🏢

Throughout his professional career, Dr. Ahmed has collaborated with eminent scholars, such as Prof. Liu Fuchun from Northwestern Polytechnical University, and has contributed significantly to research projects focused on the preparation technology of micro-nano structures and self-repair mechanisms for coatings. His work bridges academic research and industry applications, ensuring his contributions are impactful both in laboratories and in practical solutions.

Contributions and Research Focus 🔬

Dr. Ahmed’s main research interests lie in photoresponsive nanomaterials, particularly in smart fluorescence coatings and early-stage corrosion detection. He has developed oxygen-deficient nanomaterials for photocolorswitching properties, which react to light stimuli to produce fluorescent signals when exposed to corrosive environments. These innovations have been pivotal in solving the limitations of traditional coatings, which lack intelligent early-warning systems.

He has authored 21 research articles in high-impact journals, including top publications like Chemical Engineering Journal, Nanoscale, and Colloids and Surfaces A. Additionally, he holds a patent (CN111394094-A; CN111394094-B) for a dual-band light-responsive reversible color solution, showcasing his innovative contributions to smart materials.

Impact and Influence 🌍

Dr. Ahmed’s research has had a substantial impact on materials science, especially in the development of smart coatings for corrosion detection. His fluorescent smart coatings are expected to revolutionize industries such as aerospace, automotive, and marine engineering, where early detection of corrosion can prevent extensive damage and improve material longevity. His work has been widely cited and continues to influence both academic research and practical applications in coatings technology.

Academic Cites 📚

With 422 citations and an h-index of 10, Dr. Ahmed has garnered recognition for his influential contributions to the field of nanomaterials and coatings technology. His papers, particularly as the first author, in journals such as Materials Chemistry and Physics and Journal of Materials Science and Technology, reflect the significant impact of his work within the scientific community.

Research Skills 🛠️

Dr. Ahmed has mastered several advanced techniques in nanomaterials preparation, including synthesis of oxygen-deficient materials, fluorescence analysis, and computational modeling. His research is not only grounded in experimental work but also utilizes computational science to predict the behavior of materials under various environmental conditions. His ability to combine both experimental and computational approaches gives his work a robust scientific foundation.

Teaching Experience 👨‍🏫

Though primarily a researcher, Dr. Ahmed’s teaching experience is an integral part of his professional journey. At USTC, he has contributed to educating the next generation of materials scientists, particularly in the area of nanomaterials and smart coatings. He mentors students and provides them with invaluable guidance on research methodology and cutting-edge technologies in nanotechnology.

Awards and Honors 🏅

Dr. Ahmed’s excellence in research has earned him recognition in the form of publications in top-tier journals and inclusion in major collaborative projects. Although specific awards are not listed, his patent and high citation index suggest that his work is highly respected within the scientific community. His ongoing research and contributions place him in a strong position to receive further academic and professional accolades.

Legacy and Future Contributions 🔮

Dr. Sharjeel Ahmed is paving the way for future innovations in smart materials, particularly in nanomaterials that are both responsive and intelligent. As his work continues to evolve, it will likely contribute to environmentally sustainable and cost-effective solutions for industries ranging from coatings and corrosion detection to advanced textiles. His future endeavors may include expanding his patent portfolio, collaborating with industries, and broadening his research into emerging areas such as energy storage materials or biodegradable coatings.

Publications Top Notes

  • A review of advancement in fluorescence-based corrosion detection for metals and future prospects
    Authors: Sharjeel Ahmed, Hongwei Shi, Mustehsin Ali, Imran Ali, Fuchun Liu, En-Hou Han
    Journal: Journal of Materials Science & Technology
    Year: 2025

  • Epoxy coating containing CoMOF@MBT metal-organic framework for active protection of aluminum alloy
    Authors: Nwokolo, Izuchukwu K.; Shi, Hongwei; Ikeuba, Alexander I.; Liu, Fuchun; Ahmed, Sharjeel; Zhang, Wanyu
    Journal: Surface and Coatings Technology
    Year: 2024

  • Modified Graphene Micropillar Array Superhydrophobic Coating with Strong Anti-Icing Properties and Corrosion Resistance
    Authors: Zhang, Wanyu; Liu, Fuchun; Li, Yushan; Chen, Tao; Nwokolo, Izuchukwu Kenneth; Ahmed, Sharjeel; Han, En-Hou
    Journal: Coatings
    Year: 2024

  • UV light-triggered fluorescence corrosion sensing coatings for AA2024-T3 based on 8-hydroxyquinline loaded vanadium oxide nanorods
    Authors: Sharjeel Ahmed
    Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
    Year: 2024

  • Catalytic degradability and anti-permeability of peelable coating based on organophosphate nerve agent simulants
    Authors: Gao, Ningjie; Ahmed, Sharjeel; Zhang, Wanyu; Li, Jiwen; Liu, Fuchun
    Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
    Year: 2023