Robert White | particle physics | Best Researcher Award

Dr. Robert White | particle physics | Best Researcher Award

PHD at Charles University in Prague

Rob White is a Postdoctoral Researcher at INFN Sezione di Torino, specializing in the development and characterisation of LGAD sensors. He completed his Ph.D. in Particle Physics at the University of Bristol, focusing on Dark Matter and BSM Physics, and worked on statistical and ML techniques in DQM. Previously, he was a Postdoctoral Researcher at Bristol and earned his M.Phys. in Physics from the University of Manchester. His research includes characterizing FBK EXFLU1 sensors and addressing radiation effects. White has contributed to notable publications on dark matter and Higgs boson decays, reflecting his expertise in advanced particle physics.

Professional Profiles

Publications

Search for dark QCD with emerging jets in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Publication date:  2024.

Measurement of the production cross section of a Higgs boson with large transverse momentum in its decays to a pair of τ leptons in proton-proton collisions, Publication date:  2024.

Multiplicity and transverse momentum dependence of charge-balance functions in pPb and PbPb collisions at LHC energies, Publication date:  2024.

Constraints on anomalous Higgs boson couplings from its production and decay using the WW channel in proton–proton collisions at \sqrt{s} = 13~\text {TeV}, Publication date:  2024.

Search for long-lived particles decaying in the CMS muon detectors in proton-proton collisions at √𝑠=13  TeV, Publication date:  2024.

Conclusion

Rob White is a promising candidate for the Research for Best Researcher Award, especially given his early achievements in high-impact areas of particle physics. His work on LGAD sensors, involvement in cutting-edge dark matter research, and contributions to significant collaborations like CMS make him a strong contender. However, to further solidify his candidacy, he might focus on developing more independent research initiatives, broadening the impact of his work, and establishing a clear long-term research vision. Overall, White demonstrates great potential for continued excellence and leadership in the field of particle physics.

Mohsen Zahir Joozdani | particle accelerators | Best Researcher Award

Assist Prof Dr. Mohsen Zahir Joozdani | particle accelerators | Best Researcher Award

PHD at the Iran University of Science and Technology, Iran

Dr. Mohsen Zahir Joozdani is an Assistant Professor at Niroo Research Institute, Tehran, specializing in electrical engineering with a focus on communication systems, microwave technology, and antenna design. He earned his Ph.D. and M.Sc. in Electrical Engineering from the Iran University of Science and Technology. Dr. Zahir Joozdani has managed several projects in the power industry and is an expert in electromagnetic simulation and antenna measurement. His research interests include radar cross-section reduction and high-power microwave systems. He also has extensive teaching experience in various Iranian universities.

Professional Profiles

Publications:

A novel electromagnetic analysis of a TM02 mode dielectric assist accelerating structure, Publication date: 2024.

Magneto-electric Dipole Antenna for 5G, Publication date: 2022.

Enhancement of transmission line model to analyze the matching section of a dielectric-loaded accelerator with sharp discontinuities, Publication date: 2022.

Fast electromagnetic analysis of an X-band power injection coupler of dielectric-loaded accelerator using a novel transmission line model, Publication date: 2022.

Approximate method for electromagnetic analysis of a dielectric-loaded coupler used in accelerating structures, Publication date: 2020.

 

Elaheh Yaghoubi | High Energy Physics | Best Researcher Award

Dr. Elaheh Yaghoubi | High Energy Physics | Best Researcher Award

PHD at Karabuk University, Turkey

Elaheh Yaghoubi is a Ph.D. candidate in Electronic and Electrical Engineering at Karabuk University, Turkey, with a perfect GPA of 4.0. Her research focuses on power control in smart grids, model predictive control, and renewable energy. She earned her M.Sc. in Electrical Engineering from Islamic Azad University, Iran, also with a GPA of 4.0. Elaheh has extensive experience in quality control, having served as a senior manager in electronics companies and as a representative for the Iran Standard Organization. She is skilled in web design and programming and is actively involved in the PEDAR research group.

Professional Profiles

Education

Ph.D. Candidate in Electronic and Electrical Engineering Karabuk University, Turkey (2021-Present) GPA: 4.0/4.0 Thesis: Optimal power control of grid-connected distributed generation in a hierarchical framework based on Model Predictive Control Master of Science in Electrical Engineering Islamic Azad University, Qaemshahr, Mazandaran, Iran (2016-2018) GPA: 4.0/4.0 Thesis: Provide a routing algorithm for the proposed topology for a grid on a large-scale chip to detect an error Bachelor of Science in Electrical Engineering Aryan Institute of Science and Technology University, Iran (2012-2014) GPA: 4.0/4.0 Associate’s Degree in Electrical Engineering University College of Rouzbahan, Iran (2010-2012) GPA: 3.5/4.0

Professional Experience

Principal Researcher PEDAR Group, Remote (2023-Present) Investigation, teaching, and designing in power electrical engineering. Website Designer WebCore Company, Mazandaran, Iran (2019-2021) Designed front-end with HTML, CSS, JavaScript; back-end with PHP, Laravel. Senior Manager Rico Electronics Company, Mazandaran, Iran (2018-2019) Oversaw product quality assurance, ensuring compliance with industry standards, and implemented design modifications. Senior Manager Kati Kabl Tabarestan Factory, Mazandaran, Iran (2015-2018) Managed quality assurance for wire and cable products, proficient in troubleshooting and resolving technical issues.

Research Interests

Power System Analysis, Power System Stability, Power Management Microgrid and Smart Grids Renewable Energies Model Predictive Controllers (MPC) Artificial Neural Networks, Machine Learning, Deep Learning Plasmonic, Nano-Electronic Devices

Awards and Honors

1st Rank among M.Sc. students of Electronics, Islamic Azad University, Qaemshahr, Mazandaran, Iran (2018) 1st Rank among B.Sc. students of Electronics, Aryan Institute of Science and Technology University, Babol, Mazandaran, Iran

Publications

  1. A systematic review and meta-analysis of machine learning, deep learning, and ensemble learning approaches in predicting EV charging behavior, Publication date: 2024.
  2. A systematic review and meta-analysis of artificial neural network, machine learning, deep learning, and ensemble learning approaches in field of geotechnical engineering, Publication date: 2024.
  3. Electric vehicles in China, Europe, and the United States: Current trend and market comparison, Publication date: 2024.
  4. The role of mechanical energy storage systems based on artificial intelligence techniques in future sustainable energy systems, Publication date: 2023.
  5. Reducing the vulnerability in microgrid power systemsPublication date: 2023.
  6. Controlling and tracking the maximum active power point in a photovoltaic system connected to the grid using the fuzzy neural controller, Publication date: 2023.
  7. Modeling and Control of Decentralized Microgrid Based on Renewable Energy and Electric Vehicle Charging Station, Publication date: 2022.
  8. Tunable band-pass plasmonic filter and wavelength triple-channel demultiplexer based on square nanodisk resonator in MIM waveguide, Publication date: 2022.
  9. Triple-channel glasses-shape nanoplasmonic demultiplexer based on multi nanodisk resonators in MIM waveguide, Publication date: 2021.
.

Amirali Farmani | High energy physics | Best Researcher Award

Mr. Amirali Farmani | High energy physics | Best Researcher Award

PHD at Sahand University of Technology, Iran

Amirali Farmani is a Ph.D. candidate in Material Science at Sahand University of Technology, focusing on enhancing hydrogen and oxygen evolution reactions on electrodeposited nickel electrodes. He holds a Bachelor of Engineering in Material Engineering with a specialization in Metallurgy from Bonab University and a Master of Science in Material Science from Sahand University. His research includes innovative approaches to corrosion protection, nanocrystalline nickel films, and electrochemical water splitting. Amirali has contributed significantly to his field with several publications in esteemed journals and has been involved in consultancy projects, including designing novel corrosion protection systems. High energy physics

Professional Profiles

Academic and Professional Background

From September 2013 to August 2017, Amirali Farmani pursued a Bachelor of Engineering in Material Engineering with a specialization in Metallurgy at Bonab University, East Azerbaijan. Continuing his academic journey, from September 2017 to June 2020, he completed a Master of Science in Material Science focusing on Corrosion and Material Protection at Sahand University of Technology, Tabriz, East Azerbaijan. Currently, he is a Ph.D. candidate in Material Science, also at Sahand University of Technology, where his research has focused on enhancing hydrogen and oxygen evolution reactions on electrodeposited nickel electrodes through innovative approaches, as evidenced by several publications in esteemed journals.  High energy physics

Areas of Research

Functional Nanomaterials Energy Materials Corrosion and Surface Science. High energy physics

Research Focus

The researcher in question appears to focus on the fields of material science and electrochemistry, with a specific interest in the synthesis and characterization of electrode materials. Their work includes studying the enhancement of hydrogen and oxygen evolution reactions on nickel electrodes, exploring the effects of mesoporosity, magnetohydrodynamics, and high gradient magnetic forces. They also investigate the corrosion behavior and ion release of chromium-cobalt alloys, particularly under the influence of chemical passivation. Additionally, they have delved into the production of nanocrystalline nickel films using ultrasonic-assisted pulse electrodeposition, examining the competition between mass transport and nucleation in determining corrosion resistance. High energy physics

Publications

  1. Ultrasonic-assisted pulse electrodeposition process for producing nanocrystalline nickel films and their corrosion behavior: Competition between mass transport and nucleation, Publication date: 2024.
  2. Effect of chemical passivation on corrosion behavior and ion release of a commercial chromium-cobalt alloy, Publication date: 2020.
  3. Boosting hydrogen and oxygen evolution reactions on electrodeposited nickel electrodes via simultaneous mesoporosity, magnetohydrodynamics and high gradient magnetic forcePublication date: 2020.
.

Higgs Boson Research

 

Introduction to Higgs Boson Research:

Higgs boson research represents a landmark achievement in the field of particle physics. The Higgs boson, often referred to as the "God particle," is a fundamental particle predicted by the Standard Model. Its discovery at the Large Hadron Collider (LHC) in 2012 confirmed the existence of the Higgs field, which imparts mass to other particles.

Higgs Boson Properties:

Investigate the properties of the Higgs boson, including its mass, spin, and coupling strengths to other particles, which provide insights into the underlying symmetries of the universe.

Higgs Mechanism and Electroweak Symmetry Breaking:

Explore the Higgs mechanism, which explains how the Higgs field gives mass to particles and is responsible for electroweak symmetry breaking, elucidating the origins of particle masses.

Beyond the Standard Model (BSM) Higgs Physics:

Delve into BSM theories that extend Higgs physics beyond the Standard Model, including scenarios involving multiple Higgs bosons, Higgs portal interactions with dark matter, and the search for new physics phenomena associated with the Higgs.

Higgs Boson Production and Decay Modes:

Focus on the various production mechanisms and decay modes of the Higgs boson, which are studied to enhance our understanding of its interactions with other particles and its couplings.

Precision Higgs Measurements:

Examine the precision measurements of Higgs boson properties, such as its branching ratios and couplings, to test the Standard Model, search for deviations from predictions, and probe for potential new physics phenomena.

 

 

  Introduction of Chiral spinors and helicity amplitudes Chiral spinors and helicity amplitudes are fundamental concepts in the realm of quantum field theory and particle physics    They play a
  Introduction to Chiral Symmetry Breaking: Chiral symmetry breaking is a pivotal phenomenon in the realm of theoretical physics, particularly within the framework of quantum chromodynamics (QCD) and the study
  Introduction to Effective Field Theory and Renormalization: Effective field theory (EFT) and renormalization are foundational concepts in theoretical physics, particularly in the realm of quantum field theory. They provide
  Introduction to Experimental Methods: Experimental methods are the backbone of scientific investigation, enabling researchers to empirically explore and validate hypotheses, theories, and concepts. These techniques encompass a wide array
  Introduction to Free Particle Wave Equations: Free particle wave equations are fundamental concepts in quantum mechanics, describing the behavior of particles that are not subject to external forces. These
  Introduction to High Energy Physics: High-energy physics, also known as particle physics, is a branch of science dedicated to the study of the most fundamental building blocks of the
  Introduction to Interactions and Fields: Interactions and fields form the foundation of modern physics, providing the framework for understanding how particles and objects interact with one another and the
  Introduction to Invariance Principles and Conservation Laws: Invariance principles and conservation laws are fundamental concepts in physics that play a pivotal role in understanding the behavior of the physical
  Introduction to Lepton and Quark Scattering and Conservation Laws: Lepton and quark scattering processes are fundamental phenomena in particle physics, allowing us to probe the structure and interactions of
  Introduction to Particle Physics and Cosmology: Particle physics and cosmology are two closely intertwined fields of scientific inquiry that seek to unravel the mysteries of the universe at both