Zheng Wei | Nuclear Physics | Best Researcher Award

Prof. Dr. Zheng Wei | Nuclear Physics | Best Researcher Award

Lanzhou University | China

Wei Zheng is a Professor at Lanzhou University, specializing in Neutron Physics and Neutron Application Technology. With a strong academic background in Nuclear Science and Particle Physics, he has made significant contributions to the field of accelerator-based neutron sources and their applications in various nuclear technologies. He is highly recognized for his innovative research in the design and optimization of high-intensity neutron sources and their energy spectra, angular distributions, and yield calculations.

Publication Profile👨‍🎓

Scopus

Early Academic Pursuits 🎓

Wei Zheng’s academic journey began at Lanzhou University, where he earned his Bachelor’s degree in Nuclear Science (2007-2011). His interest in particle and nuclear physics led him to pursue a Doctoral degree in Particle Physics and Nuclear Physics, which he completed in 2016. During his early academic years, he developed a deep understanding of nuclear reactions and their applications in real-world technologies, laying the foundation for his future research.

Professional Endeavors 💼

After completing his doctorate, Professor Wei embarked on an academic career at Lanzhou University, starting as a Lecturer (2016-2019). He was later promoted to Associate Professor (2020-2021) and then Professor (2022-present). Over the years, he has gained a reputation for excellence in both research and teaching, mentoring students and collaborating with international experts in the field of neutron physics and nuclear science.

Contributions and Research Focus 🔬

Professor Wei’s research focus lies at the intersection of neutron physics, nuclear technology, and accelerator design. His work on the ZF-400 neutron source, a high-intensity D-D/D-T fusion neutron generator, is particularly notable. His team’s work on compact D-D neutron generators showcases his dedication to miniaturization and efficiency in neutron production. This compact design achieves a maximum D-D neutron yield greater than 1.0E+9 n/s, highlighting the technological advancements under his leadership.

Academic Cites 📚

Professor Wei has published extensively in top-tier journals, contributing over 30 high-impact articles in the fields of neutron physics, accelerator-based neutron sources, and nuclear technology.

Research Skills 🔧

Professor Wei Zheng possesses a wealth of research skills, ranging from accelerator design to neutron measurement and analysis. His expertise includes:

  • High-intensity neutron source design
  • Neutron energy spectrum and angular distribution calculations
  • Neutron yield and radiation diagnostics
  • Advanced computational modeling for nuclear reactions
  • Neutron-gamma discrimination techniques using machine learning

His advanced skills in multi-layer computing models and Monte Carlo simulations allow him to explore complex neutron interactions and optimize the design of accelerator-based neutron sources.

Teaching Experience 📖

As an educator, Professor Wei has been instrumental in shaping the next generation of nuclear scientists. His academic roles as a Lecturer, Associate Professor, and Professor at Lanzhou University have involved both teaching and mentoring. He has developed and taught a variety of courses related to nuclear physics, neutron science, and accelerator technology, and has supervised numerous PhD and Master’s students, helping them to become leaders in the field.

Legacy and Future Contributions 🌟

Looking ahead, Professor Wei Zheng’s legacy will undoubtedly continue to influence the fields of neutron physics and accelerator technology. His pioneering work in neutron source development has not only advanced scientific understanding but also has practical implications for industrial applications. His ongoing projects and future research promise to further refine neutron-based diagnostic techniques, expand neutron source capabilities, and enhance the safety and efficiency of nuclear systems.

 Publications Top Notes

Influence of octupole deformed shell structure on the asymmetric fission of mercury isotopes

  • Authors: Huo, D.-Y., Wei, Z., Wu, K., Zhang, Y., Wang, J.-R.
    Journal: European Physical Journal A
    Year: 2024

 Development of a high-yield compact D-D neutron generator

  • Authors: Bai, X., Ma, J., Wei, Z., Yao, Z., Zhang, Y.
    Journal: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
    Year: 2024

Competition of decay modes for Z=119 and Z=120 superheavy nuclei

  • Authors: Wang, W., Ma, N., Zhang, Y., Wei, Z., Zhang, H.
    Journal: European Physical Journal A
    Year: 2024

Transparent Glass Composite Scintillator with High Crystallinity for Efficient Thermal Neutron Detection

  • Authors: Wang, D., Zhang, S., Chen, J., Qiu, J., Zhou, S.
    Journal: Advanced Functional Materials
    Year: 2024

Neutron-gamma discrimination with broaden the lower limit of energy threshold using BP neural network

  • Authors: Zhang, S.Y., Wei, Z., Zhang, P.Q., Su, X.D., Yao, Z.E.
    Journal: Applied Radiation and Isotopes
    Year: 2024

 

 

 

Cheng-Rong Deng | Nuclear Physics | Best Researcher Award

Prof. Cheng-Rong Deng | Nuclear Physics | Best Researcher Award

Physics teacher at Southwest Univeristy, China

Cheng-Rong Deng is a distinguished Professor of Physics at Southwest University, specializing in theoretical hadron physics. His research primarily revolves around exotic hadron states and hadron-hadron interactions. With a robust academic foundation and international experience, Deng has established himself as a leading figure in his field. His work has garnered significant recognition, underscoring his impact on advancing theoretical physics.

Profile:

🎓Education:

Cheng-Rong Deng earned his PhD in Theoretical Physics from Nanjing Normal University, China, in 2008, following his MS in Theoretical Physics from the same institution in 2005. His academic journey includes valuable experiences as a visiting scholar at Peking University (2021-2022) and UCLA (2015-2016), where he collaborated with esteemed researchers and broadened his expertise in hadronic physics.

Professional Experience:

Deng’s professional trajectory includes a series of esteemed appointments: since 2018, he has served as a Professor in the Department of Physics at Southern University, China. Prior to this role, he was a Professor and Associate Professor at Chongqing Jiaotong University from 2015 to 2014, where he significantly contributed to the development of the physics curriculum and mentored numerous students.

Research Focus:

Deng’s research interests encompass the quark model, hadron spectra, exotic hadrons, and hadron-hadron interactions. His investigations into exotic hadron states aim to unravel the complexities of hadronic physics, providing insights into the fundamental building blocks of matter. Through his innovative approaches and collaborative efforts, he strives to expand the boundaries of knowledge in theoretical physics.

Awards and Honors:

In 2023, Cheng-Rong Deng was recognized as one of the world’s top 2% scientists in the field of Nuclear and Particle Physics, a testament to his profound contributions and research excellence. This accolade reflects his commitment to advancing scientific understanding and his influence within the global physics community.

📖Publication Top Notes:

Title: Tetraquarks and Pentaquarks from Quark Model Perspective
  • Authors: Huang, H., Deng, C., Liu, X., Tan, Y., Ping, J.
    Publication Year: 2023
    Citations: 14
Title: Quark orbital angular momentum of ground-state octet baryons
  • Authors: Li, J.-F., Chen, C., Li, G., Deng, C.-R., Xie, J.-J.
    Publication Year: 2023
    Citations: 1
Title: Zcs (4000)+ and Zcs (4220)+ in a Multiquark Color Flux-Tube Model
  • Authors: Wang, Y.-H., Wei, J., An, C.-S., Deng, C.-R.
    Publication Year: 2023
    Citations: 7
Title: Spectrum of the S-wave fully-heavy tetraquark states
  • Authors: Zhang, J., Wang, J.-B., Li, G., Deng, C.-R., Xie, J.-J.
    Publication Year: 2022
    Citations: 12
Title: Color flux-tube nature of the states Tcs (2900) and Tc s ¯ a (2900)
  • Authors: Wei, J., Wang, Y.-H., An, C.-S., Deng, C.-R.
    Publication Year: 2022
    Citations: 15

 

 

Shixiang Peng | Nuclear Physics | Best Researcher Award

Prof Dr. Shixiang Peng | Nuclear Physics | Best Researcher Award 

Academician/Research Scholar at State Key Laboratory of Nuclear Physics and Technology & Institute of Heavy Ion Physics, China

Prof. Dr. Shixiang Peng is a renowned physicist at the State Key Laboratory of Nuclear Physics and Technology and the Institute of Heavy Ion Physics, China. With extensive research in nuclear physics, his expertise lies in the application of heavy ion physics, focusing on cutting-edge experimental and theoretical methods. Dr. Peng has made significant contributions to understanding nuclear reactions and the structure of atomic nuclei. He has been an active participant in numerous international collaborations and projects aimed at advancing nuclear science. His work is highly regarded by the scientific community, earning him several prestigious awards and honors. Dr. Peng is also a dedicated mentor, guiding students and researchers in their academic and professional pursuits. His research continues to shape the future of nuclear physics, with a vision of advancing scientific knowledge and its practical applications.

🌱Profile

🧑‍🎓 Early Academic Pursuits

Shixiang Peng began his academic journey with a strong foundation in physics and engineering, honing his skills and knowledge in ion source technologies. His dedication to research led him to Peking University, where he developed a deep interest in ion source physics, laying the groundwork for a prolific career in nuclear physics and technology.

💼 Professional Endeavors

As a Professor at Peking University and the head of the ion source group at the State Key Laboratory of Nuclear Physics and Technology, Shixiang has played a crucial role in advancing research in ion sources. His leadership has fostered an environment of innovation and collaboration, attracting talented researchers to work on cutting-edge projects that push the boundaries of ion source technology.

🔬 Contributions and Research Focus

Shixiang’s research primarily revolves around ion source physics, particularly microwave ion sources. He has authored numerous publications, including works on beam efficiency and plasma simulation. His contributions to the development of miniaturized microwave ion sources and surface wave plasma sources are particularly noteworthy, showcasing his commitment to improving the performance and reliability of ion sources in various applications.

🌍 Impact and Influence

Shixiang Peng’s work has significantly influenced the field of ion source technology, with his publications being widely cited in scientific literature. His research has paved the way for advancements in nuclear physics applications, including medical and industrial uses, demonstrating the practical impact of his academic efforts on society.

📚 Academic Cites

With a remarkable record of over 20 peer-reviewed publications, Shixiang’s research is highly regarded in the scientific community. His work has garnered numerous citations, reflecting the relevance and importance of his findings in advancing ion source technology and its applications.

🛠️ Technical Skills

Shixiang possesses a diverse skill set, including expertise in plasma simulation, microwave ion sources, and beam diagnostics. His technical acumen extends to hands-on experience with advanced instrumentation, making him a leading figure in the development of innovative ion source solutions.

👨‍🏫 Teaching Experience

In addition to his research, Shixiang is committed to education, mentoring students and junior researchers in the field of nuclear physics. His teaching philosophy emphasizes hands-on experience and real-world applications, preparing the next generation of scientists to tackle complex challenges in ion source technology.

🌟 Legacy and Future Contributions

Shixiang Peng’s legacy in ion source research is marked by his innovative contributions and commitment to excellence. Looking ahead, he aims to continue advancing the field by exploring new technologies and methodologies. His vision for future research includes developing more efficient ion sources and expanding their applications in various scientific disciplines, ensuring a lasting impact on the field of nuclear physics and technology.

📖Publication Top Notes

Publication Title: C− generation by charge exchange with non-metallic gas for positive ion mass spectrometry

  • Authors: Cui, B., Peng, S., Li, K., Guo, Z., Chen, J.
    Publication Year: 2024
    Citations: 0

Publication Title: Prototype of a 2.45 GHz cylindrical ceramic dielectric antenna surface wave plasma source for flood gun

  • Authors: Peng, S., Cui, B., Jiang, Y., Guo, Z., Chen, J.
    Publication Year: 2024
    Citations: 0

Publication Title: A new proton injector based on PKU-type 2.45GHz PMECR ion source for BNCT facility

  • Authors: Cui, B., Peng, S., Ma, T., Guo, Z., Chen, J.
    Publication Year: 2024
    Citations: 0

Publication Title: Design and Experiment of a Slotted Antenna Surface Wave Plasma Flood Gun

  • Authors: Cui, B., Peng, S., Ma, T., Guo, Z., Chen, J.
    Publication Year: 2024
    Citations: 0

Publication Title: The High Beam to Power Efficiency Investigation of Miniaturized Microwave Ion Source

  • Authors: Peng, S., Ma, T., Cui, B., Guo, Z., Chen, J.
    Publication Year: 2024
    Citations: 0