Guangming Tao | Interactions and fields | Best Paper Award

Prof. Guangming Tao | Interactions and fields | Best Paper Award

Professor at Huazhong University of Science and Technology, China

Professor Guangming Tao is a distinguished academic at the Huazhong University of Science and Technology (HUST) in Wuhan, China. He serves as a Professor at both the Wuhan National Laboratory for Optoelectronics and the School of Materials Science and Engineering, and also leads as Director of the Sports and Health Initiative at the Optics Valley Laboratory. With a prolific academic journey rooted in optics and advanced materials, Prof. Tao has become an internationally recognized leader in wearable photonic technologies, metatextiles, and fiber-based smart systems, boasting over 120 research papers and ~6500 citations as of 2025.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Prof. Tao began his academic journey with a Bachelor’s degree in Optical Information Science and Technology from Shandong University (2006-2009). He then earned a Master’s in Optics from Fudan University, further deepening his expertise in light-based technologies. Driven by a strong research inclination, he pursued his Ph.D. in Optics at the University of Central Florida (CREOL), under the guidance of Prof. Ayman Abouraddy. His early academic focus laid a robust foundation in photonic materials, optical fiber design, and fabrication techniques, which later evolved into interdisciplinary applications in wearables, health monitoring, and energy-efficient devices.

🧑‍💼 Professional Endeavors 

Following his Ph.D., Prof. Tao continued at CREOL, University of Central Florida, serving as a Research Scientist (2014–2015) and later as a Senior Research Scientist (2015–2017). In 2017, he returned to China to join HUST as a full professor. At HUST, he leads multiple initiatives spanning materials science, optoelectronics, and smart textiles. As Director at Optics Valley Laboratory, he coordinates research that bridges fundamental science with real-world applications, notably in sports health, environmental sensing, and interactive display systems. His work emphasizes scalability, interactivity, and energy efficiency, making significant contributions to national and global research programs.

🔬 Contributions and Research Focus

Prof. Tao’s research is centered around wearable optoelectronics, fiber-based intelligent systems, and metamaterials for thermal regulation. He has pioneered innovations such as photochromic fiber displays, cooling metafabrics, and smart electronic cords. His published work includes breakthroughs in Science, Light: Science & Applications, Advanced Materials, and Nature Communications. His group focuses on designing materials that combine mechanical comfort, visual functionality, and energy autonomy, enabling advances in smart clothing, health monitoring, and adaptive camouflage. His innovations bridge the gap between lab-scale photonics and consumer-level smart textiles, defining new paradigms in functional wearables.

🌍 Impact and Influence

With over 6500 citations, Prof. Tao’s research has had a broad international impact across optics, materials science, wearable electronics, and environmental engineering. His innovations are shaping next-generation smart fabrics and redefining how textiles interact with light and temperature. His passive radiative cooling metafabrics, recognized by Science, are now a reference in sustainable energy management. His photochromic fiber displays are transforming interactive wearables, making them lighter, more responsive, and energy-efficient. Through international collaborations and open-access dissemination, he has become a thought leader, influencing both academic peers and industrial developers in smart material systems.

📚 Academic Citations

Prof. Tao’s scholarly influence is marked by 120+ peer-reviewed publications and ~6500 citations (as of July 2025), with papers featured in top-tier journals such as Science, Nature Communications, Advanced Materials, and Light: Science & Applications. His most cited works include “Hierarchical-morphology metafabric” (Science 2021) and “Imperceptible braided electronic cord” (Nat. Commun. 2022). His research is consistently referenced in studies on thermal textiles, wearable sensors, and adaptive optics, underlining his central role in advancing interdisciplinary material technologies. His H-index and citation velocity reflect both the depth and growing relevance of his contributions to global innovation.

🧪 Research Skills

Prof. Tao possesses a unique combination of expertise in optics, nanofabrication, polymer processing, and textile integration. His core skills include fiber optics design, photochromic materials engineering, thermal management systems, and flexible electronics integration. He excels at converting advanced material science principles into functional, wearable prototypes. He leads multi-institutional projects, efficiently managing teams with diverse backgrounds. His capability to develop scalable fabrication processes makes his innovations ready for mass production and real-world adoption. With strong analytical and experimental skills, he bridges the gap between laboratory innovation and commercial application, often delivering solutions tailored to healthcare, environment, and defense sectors.

🧑‍🏫 Teaching Experience 

At Huazhong University of Science and Technology, Prof. Tao teaches courses in Optoelectronics, Advanced Materials, and Smart Textiles to undergraduate and graduate students. He actively supervises Ph.D. and Master’s students, many of whom have received national scholarships and awards. His mentorship emphasizes interdisciplinary thinking, hands-on experimentation, and innovation-driven research. He integrates cutting-edge research topics into his teaching, fostering a research-intensive learning environment. Through seminars, workshops, and lab training, he cultivates the next generation of scientists in wearable technologies and functional materials. His teaching philosophy is centered on curiosity, creativity, and cross-border collaboration.

🏆 Awards and Honors

Prof. Tao has earned multiple accolades recognizing his scientific innovation and leadership. These include Best Paper Awards, invitations to international keynote speeches, and governmental research grants supporting national-level projects. His paper on radiative cooling metafabric gained global attention and has been cited in climate and textile engineering domains. He has been nominated for awards in smart wearable innovation and advanced materials research, reflecting his broad influence. His leadership at the Optics Valley Laboratory and his role in large-scale interdisciplinary projects showcase his visionary direction in research. His consistent recognition affirms his place among leading figures in wearable photonics.

🔮 Legacy and Future Contributions

Prof. Guangming Tao is shaping the future of smart materials and functional fabrics. His legacy lies in merging fundamental optics with wearable systems, setting new benchmarks in interactive textiles and adaptive materials. Looking forward, he aims to expand into bio-integrated systems, AI-driven textile interfaces, and next-gen photonic skin for healthcare and defense. He envisions a world where textiles are not passive layers, but intelligent interfaces interacting seamlessly with users and the environment. Through global collaborations, mentorship, and technology transfer, Prof. Tao is committed to pushing scientific boundaries while ensuring that innovations reach and benefit society at large.

Publications Top Notes

Radiation-modulated thermoelectric fabrics for wearable energy harvesting

  • Authors: Y. Wang, H. Liu, S. Zhang, G. Tao, C. Liu, C. Shen

  • Journal: National Science Review

  • Year: 2025

Stretchable polymer optical fiber with an unusual relationship between optical loss and elongation

  • Authors: W. Wang, Z. Li, R. Zhao, Y. He, G. Tao, C. Hou

  • Journal: Journal of Lightwave Technology

  • Year: 2024

All-polymer aqueous fiber battery for sustainable electronics

  • Authors: M. Yang, G. Tao, M. Zhu, C. Hou

  • Journal: Advanced Fiber Materials

  • Year: 2025

Scalable hierarchical‐colored passive cooling Metapaint for outdoor facility

  • Authors: M. Yang, Z. Zhou, M. Liu, J. Wu, J. Li, J. Liang, S. Zhang, M. Chen, H. Zeng, X. Li, G. Tao, et al.

  • Journal: EcoMat

  • Year: 2024

Cooling textiles provide a new solution to urban heat islands

  • Authors: Z. Li, S. Zhang, Z. Yang, Z. Liang, N. Zhou, G. Tao, C. Hou

  • Journal: Advanced Fiber Materials

  • Year: 2024

 

 

Steephenraj Arokiyasamy | Experimental methods | Best Researcher Award

Dr. Steephenraj Arokiyasamy | Experimental methods | Best Researcher Award

Post Doctoral Fellow at Rhodes University | South Africa

Dr. Steephenraj A. is a highly motivated and accomplished Postdoctoral Fellow in Physics at Rhodes University, South Africa, with a strong academic foundation and robust research expertise. He completed his Ph.D. in Physics from the prestigious SSN Research Centre, affiliated with Anna University, Chennai, with a focus on Nonlinear Optical (NLO) materials and third harmonic generation applications. His academic journey is a testament to a profound dedication to science, teaching, and research excellence.

👨‍🎓Profile

ORCID

🎓 Early Academic Pursuits

Dr. Steephenraj laid his academic foundation with a B.Sc. and M.Sc. in Physics, graduating with First Class honors from A.V.C College and Poombuhar College, respectively, both affiliated with Bharathidasan University. He further pursued an M.Phil in Physics from St. Joseph’s College, Trichy, refining his interest in experimental and computational physics. These formative years shaped his strong analytical mindset and commitment to scientific inquiry.

👨‍🏫 Professional Endeavors

With a commendable academic trajectory, Dr. Steephenraj has held the position of Assistant Professor at several esteemed institutions such as Mohamed Sathak A.J. College of Engineering and St. Joseph’s College of Arts and Science, Chennai. His tenure in these roles reflects a commitment to integrating teaching with cutting-edge research, nurturing young scientific minds, and contributing to curriculum development in Physics and Computer Applications.

🔬 Contributions and Research Focus

Dr. Steephenraj’s Ph.D. thesis stands out as a substantial contribution to the field of materials science and nonlinear optics, with a special focus on imidazolium-based dicarboxylic acid derivative single crystals. His research blends experimental crystal growth techniques (like slow evaporation) with computational methods such as Density Functional Theory (DFT). The work revolves around Third Harmonic Generation (THG)—a process vital to optical imaging, telecommunications, and laser frequency conversion. His investigations into 2MIMDT, IMSU, and 2MIO crystals have uncovered significant insights into their optical, structural, and thermal behaviors.

🌍 Impact and Influence

His research has not only been published in high-impact journals like Journal of Molecular Structure, Chemical Papers, and Journal of Materials Science: Materials in Electronics, but has also been acknowledged through citations and collaborations. His work contributes meaningfully to the global understanding of nonlinear optical materials and promotes advancements in laser-based technologies.

📚 Academic Citations

Dr. Steephenraj has authored over 6 peer-reviewed journal papers, many of which are indexed in Scopus and have a respectable impact factor ranging from 1.9 to 4.0. Notable among these is his work on Imidazolium Hydrogen Succinate and 2-Methylimidazolium D-Tartrate, which have been cited by fellow researchers in the field of nonlinear optics and computational material studies.

🧪 Research & Analytical Skills

He possesses hands-on expertise in advanced scientific instrumentation and software tools such as:

  • Wilson Vickers Hardness Tester, Z-scan, UV–Visible NIR, FT-IR, SEM, TG/DTA

  • Computational Tools: Gaussian 09W, GaussView, Quantum ESPRESSO, Mercury, Crystal Explorer, Bilbao Crystallographic Server, and more.

These skills have enabled him to successfully characterize materials and simulate molecular properties to predict optical behavior with high precision.

👨‍🏫 Teaching Experience

Dr. Steephenraj has rich teaching experience spanning several years, covering both undergraduate and postgraduate curricula in Physics and Computer Applications. He is recognized for his concept-based approach, emphasizing hands-on learning, student engagement, and the integration of research with teaching. He has also guided M.Sc. and Ph.D. students, showcasing his capability as a mentor and academic leader.

🏆 Awards and Honors

His dedication to academics and research has earned him prestigious accolades such as:

  • Best Teacher Award (2022–2023) – Mohamed Sathak AJ College of Engineering.

  • Best Poster Award – Jeppiaar Engineering College (2018).

  • Resource Person for national and international conferences and faculty development programs.

These accolades reflect his outstanding performance in academia and research dissemination.

🧭 Legacy & Future Contributions

Looking ahead, Dr. Steephenraj aspires to make significant contributions in advanced materials science and optical physics, with goals aligned toward sustainable technologies and global collaborations. His long-term vision includes becoming a leading research scientist and an academic policy influencer, helping shape the future of science education and innovative research in Physics.

Publications Top Notes

Studies on the Growth, Structural, Optical and Quantum chemical investigations of 2-Methylimidazolium D-Tartrate Single Crystal for SHG applications

  • Authors: A. Steephenraj, S. Chinnasami, Rajesh Paulraj
    Journal: Journal of Materials Science: Materials in Electronics
    Year: 2022

Growth, structural, vibrational, characterization and DFT investigations of 2-methylimidazolium hydrogen oxalate dihydrate (2MIO) single crystal – towards third order NLO applications

  • Authors: A. Steephenraj, S. Chinnasami, P. Rajesh, S.S.J. Dhas
    Journal: Journal of Molecular Structure
    Year: 2023

Synthesis and optical Properties of Tin oxide thin films nanoparticles

  • Authors: A. Steephenraj, P. Rajendhiran
    Journal: Journal for Advanced Research in Applied Science

Growth of High Quality KADP Mixed Crystals Grown by Conventional and Sankaranayanan-Ramasamy (SR) Methods for Nonlinear Optical Applications

  • Authors: T.S. Franklin Rajesh, J.S. Dhas, A. Steephenraj, R. Senthamizhselvi, A. Sivakumar, R.S. Kumar, Abdulrahman I. Almansour
    Journal: Journal of Optical Materials
    Year: 2024

 2-Methylimidazolium hydrogen succinate single crystal growth and DFT insight for NLO applications

  • Authors: K. Sowmiya, A. Steephenraj, M. Avinash, R. Gunaseelan, P. Sanjay
    Journal: Journal of Molecular Physics
    Year: 2025

 

Waseem Razzaq | Mathematical Physics | Member

Dr. Waseem Razzaq | Mathematical Physics | Member

PHD at COMSETS Vehari Campus, Pakistan

Waseem Razzaq, a dedicated mathematician based in Vehari, Pakistan, holds a PhD in Mathematics and specializes in applied mathematics, fractional calculus, and exact solutions of differential equations. With a strong academic background, including an MPhil and MSc in Mathematics, Razzaq has authored numerous research articles published in reputable journals. He excels in teaching and has held various positions in educational institutions. Recognized as “The Best Teacher of the Year 2011,” Razzaq is passionate about supporting humanitarian actions, enjoys sports and book reading, and actively contributes to educational resources through his YouTube channel “Math Center.”

Professional Profiles:

Education

PhD: Institution: COMSETS Vehari Campus Subject: Mathematics Session: 2022 Fall – Continue Master of Philosophy: Institution: ISP, Multan, Pakistan Subject: Mathematics Session: 2018-2020 Master of Science: Institution: BZU, Vehari campus, Pakistan Subject: Mathematics Session: 2015-017 B.Ed: Institution: AIOU Islamabad Subjects: Math, Physics Session: 2016 B.Sc: Institution: BZU, Multan, Pakistan Subjects: Math-A&B/Comp Session: 2015

Work Experience

V.Principal, Vehari Leads College Pipli Adda Vehari (Feb 2021 – Present) Lecturer (Mathematics), Aspire Groups of Colleges Machiwal campus (July 2019 – Sep 2020) Visiting Lecturer (Mathematics), The Govt. Degree College Vehari (2018) Teacher (Math & Phy), The Smart School Vehari (2016) Teacher (Mathematics), The Educator College (girls campus) Vehari (2014-2015) Teacher (Math & Phy), Allied School Vehari (2013-2014) Teacher (Mathematics), The Public School Vehari (2009-2012)

Achievement

Awarded “The Best Teacher of the Year 2011” in The Public School Vehari.

Research Interests

Applied Mathematics Fractional Calculus Exact solutions of PDEs and ODEs Optimization Numerical solutions of PDEs and ODEs

Research Focus:

Waseem Razzaq’s research focuses on the theoretical and analytical aspects of nonlinear wave equations in optical and oceanographic sciences. He specializes in deriving exact soliton solutions and wave behaviors using various mathematical techniques, including the simplest equation method and fractional calculus. Razzaq’s contributions extend to diverse fields such as nonlinear optics, ocean engineering, and modern physics, as evidenced by his publications in reputable journals. His work significantly advances our understanding of nonlinear phenomena and contributes to the development of mathematical tools for modeling complex systems in optics and oceanography.

Publications

  1. Construction of Solitons and Other Wave Solutions for Generalized Kudryashov’s Equation with Truncated M-Fractional Derivative Using Two Analytical Approaches, cited by: 1, Publication: 2024.
  2. The complex hyperbolic Schrödinger dynamical equation with a truncated M-fractional by using simplest equation method, Publication: 2024.
  3. Applications of the Simplest Equation Procedure to Some Fractional Order Differential Equations in Mathematical Physics, Publication: 2024.
  4. The kink solitary wave and numerical solutions for conformable non-linear space–time fractional differential equationsPublication: 2024.
  5. Searching the new exact wave solutions to the beta-fractional Paraxial nonlinear Schrödinger model via three different approaches, cited by: 3, Publication: 2024.
  6. New analytical wave solitons and some other wave solutions of truncated M-fractional LPD equation along parabolic law of non-linearitycited by: 4, Publication: 2023.
  7. Solitary wave solutions of coupled nerve fibers model based on two analytical techniques, cited by: 2, Publication: 2023.
  8. Optical solitons to the beta-fractional density dependent diffusion-reaction model via three different techniques, Publication: 2023.
  9. New Three Wave and Periodic Solutions for the Nonlinear (2+ 1)-Dimensional Burgers Equations, Publication: 2023.
  10. Research Article Solitary Wave Solutions of Conformable Time Fractional Equations Using Modified Simplest Equation Method, Publication: 2022.
.