Dingguo Xia | The matter particles | Best Researcher Award

Prof. Dingguo Xia | The matter particles | Best Researcher Award

Professor, Peking University, China

Prof. Dingguo Xia is a distinguished scholar in materials chemistry and energy systems, serving as a Professor at the College of Engineering, Peking University. With a research career spanning nearly four decades, his expertise encompasses lithium-ion batteries, fuel cell catalysts, and Density Functional Theory (DFT) in energy materials. He has led major national R&D projects and published extensively in top-tier journals like Nature Communications, Advanced Materials, and JACS. Recognized with national awards and global collaborations, Prof. Xia’s contributions continue to influence the future of sustainable energy solutions and material science.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Prof. Xia began his academic journey with a B.S. in Materials Science and Engineering from Huadong Metallurgical Institute, followed by an M.S. in Physical Chemistry at the Harbin Institute of Technology. He earned his Ph.D. in Metallurgical Physical Chemistry from the University of Science and Technology Beijing. These early academic milestones laid the foundation for his future in materials innovation and energy chemistry, equipping him with a strong base in chemical thermodynamics, kinetics, and electrochemistry. His education reflected a solid cross-disciplinary grounding, preparing him to address pressing global challenges in energy and sustainability.

🧑‍🏫 Professional Endeavors

Prof. Xia has served as a Professor in the School of Materials Science and Engineering at Peking University since 2010. His career includes appointments as a Visiting Professor at the National Research Council of Canada and Nantes University in France, and prior roles at Beijing Polytechnic University. His career path demonstrates a dynamic balance of academic, industrial, and international experience. Earlier, he worked as an Assistant Engineer at Wuhan Iron and Steel Company, offering valuable industry insights. Prof. Xia has successfully led and managed multidisciplinary teams on projects of national strategic significance in energy material development.

🔬 Contributions and Research Focus

Prof. Xia’s research centers on energy conversion and storage, with pioneering work in lithium-ion battery materials, low-temperature fuel cell catalysts, and high-entropy alloy nanomaterials. He excels in applying Density Functional Theory (DFT) to unravel material behaviors at the atomic scale. His recent focus includes stabilizing anionic redox reactions in Li-rich cathodes and creating ultrahigh-performance cathode and electrolyte materials. His contributions have accelerated the development of sustainable and high-efficiency energy storage technologies, driving both theoretical understanding and applied innovations. His work bridges computational modeling and experimental chemistry, making him a leader in next-generation energy material research.

🌍 Impact and Influence 

With publications in Nature Sustainability, Advanced Materials, and JACS, Prof. Xia’s work enjoys global recognition and high citation impact. His leadership in multi-million RMB national R&D programs illustrates his national strategic importance in energy technology. As an expert in high-entropy catalysts and lithium battery materials, his research influences both academic development and industrial applications. He has mentored emerging researchers and collaborated with scientists worldwide, including Canada and France, strengthening his international research network. His innovations contribute significantly to green energy systems and carbon neutrality goals, marking him as a transformative figure in materials and energy science.

📚 Academic Citations

Prof. Xia has authored numerous highly-cited publications in elite scientific journals. His papers on oxygen reduction reactions, Li-CO₂ batteries, and anion redox strategies are widely referenced in the field of electrochemistry and energy materials. Although exact metrics (e.g., h-index or citation count) are not listed, the repeated presence in top-ranked journals such as Nature Communications, Advanced Materials, and JACS reflects a high academic citation footprint. His publications address both fundamental and applied aspects of material science, making them essential references for fellow researchers, policymakers, and industry stakeholders interested in battery technologies and catalytic materials.

🧪 Research Skills

Prof. Xia demonstrates excellence in both theoretical and experimental domains. His expertise includes Density Functional Theory (DFT) simulations, materials synthesis, and electrochemical testing. He is highly skilled in designing multi-component nanomaterials, especially high-entropy intermetallics, and developing catalysts for fuel cells and battery systems. His work on entangled polymer electrolytes and cation-disorder engineering showcases advanced material design. Additionally, his ability to link atomic-level modeling with macroscopic battery performance highlights his interdisciplinary fluency. He leads large-scale research with strategic vision, precision, and collaboration, making him a pivotal figure in cutting-edge energy materials science.

👨‍🏫 Teaching Experience

Prof. Xia has over two decades of teaching and mentoring experience, currently educating future scientists at Peking University’s School of Materials Science and Engineering. He has supervised Ph.D. and master’s students in areas like energy storage, catalysis, and computational chemistry, many of whom now contribute to academia and industry. His global teaching exposure, including roles in France and Canada, enriches his pedagogy with cross-cultural perspectives. He blends theoretical depth with research applicability, often integrating real-world case studies from his projects into the classroom. His mentoring fosters independent thinking, critical analysis, and research innovation.

🏆 Awards and Honors

Prof. Xia has earned prestigious accolades for his scientific excellence, including the First Prize of the Beijing Municipal Science & Technology Award (2010) and the Second Level of the National Scientific and Technological Progress Award (2009). These honors reflect national-level recognition for his impactful work in green energy materials and catalysis. His research has been vital to China’s scientific advancement in sustainable technologies, aligning with governmental priorities. These awards validate his status as a leading innovator, and affirm the societal and industrial relevance of his work. His career is decorated with a legacy of scientific integrity and contribution.

🌟 Legacy and Future Contributions

Prof. Dingguo Xia stands as a trailblazer in the field of energy materials, with a legacy built on innovation, mentorship, and international collaboration. As energy sustainability becomes more urgent globally, his future work on high-capacity batteries, low-cost catalysts, and smart electrolyte systems promises to reshape the energy landscape. He is positioned to lead China’s transition toward clean energy technologies, bridging scientific excellence with industrial relevance. Prof. Xia’s vision for next-gen lithium systems, paired with his commitment to training young researchers, will ensure a lasting impact on the scientific community and energy solutions for decades to come.

Publications Top Notes

Antisite defect unleashes catalytic potential in high-entropy intermetallics for oxygen reduction reaction

  • Authors: Tao Chen, Xinkai Zhang, Hangchao Wang, Chonglin Yuan, Yuxuan Zuo, Chuan Gao, Wukun Xiao, Yue Yu, Junfei Cai, Tie Luo, Yan Xiang, Dingguo Xia
    Journal: Nature Communications
    Year: 2025

Improving intrinsic safety of Ni-rich layered oxide cathode by modulating its electronic surface state

  • Authors: (Author names not listed in your data. Likely includes Dingguo Xia)
    Journal: Energy Storage Materials
    Year: 2025

All-Solid-State Lithium Metal Batteries with Microdomain-Regulated Polycationic Solid Electrolytes

  • Authors: (Author names not listed in your data. Likely includes Dingguo Xia)
    Journal: Advanced Materials
    Year: 2025

Hopping-Phase Ion Bridge Enables Fast Li⁺ Transport in Functional Garnet-Type Solid-State Battery at Room Temperature

  • Authors: (Author names not listed in your data. Likely includes Dingguo Xia)
    Journal: Advanced Materials
    Year: 2025

High-Entropy Alloy Nanoflower Array Electrodes with Optimizable Reaction Pathways for Low-Voltage Hydrogen Production at Industrial-Grade Current Density

  • Authors: (Author names not listed in your data. Likely includes Dingguo Xia)
    Journal: Advanced Materials
    Year: 2025

 

Ahmed Abdelsalam | Theoretical Advances | Best Researcher Award

Mr. Ahmed Abdelsalam | Theoretical Advances | Best Researcher Award

Teaching assistant at Cairo University | Egypt

Ahmed Gamal Abdelsalam is a passionate theoretical physicist and teaching assistant at Cairo University, with deep involvement in quantum mechanics, plasma physics, and high-energy particle research. Originating from Giza, Egypt, Ahmed has consistently combined academic excellence with community service, showing both intellectual and social commitment. His journey from volunteer educator to published researcher reflects a blend of discipline, leadership, and scientific rigor. Known for his multi-disciplinary expertise, he contributes actively to Egypt’s academic and scientific development, with a strong potential to make lasting international contributions in physics and data modeling.

👨‍🎓Profile

Google scholar

🎓 Early Academic Pursuits

Ahmed began his academic career with a B.Sc. in Science from Cairo University in 2016. He enhanced his learning through prestigious summer schools at Zewail University and hands-on training at the National Research Center. His pursuit of knowledge led him to complete a Pre-Master’s program in 2019 and an M.Sc. in Science in 2021, specializing in theoretical physics. Through these experiences, Ahmed demonstrated early interest in particle interactions and quantum potentials, setting the foundation for future research. His commitment to academic excellence is supported by continuous training in plasma physics and modern physical theories.

💼 Professional Endeavors

Ahmed’s professional journey began with volunteer teaching in a literacy project (2011–2012), where he rose to team leader. From 2016 to 2018, he served as a military officer, leading operations with precision. Since 2018, he has worked as a teaching assistant at Cairo University, supporting courses in physics, research guidance, and laboratory instruction. These roles exhibit his leadership, discipline, and mentorship capabilities. His seamless transition between education, national service, and academia reflects strong adaptability, professional responsibility, and a dedication to societal development alongside academic growth.

🔬 Contributions & Research Focus

Ahmed’s research spans quarkonium spectroscopy, spin splitting, and magnetic interactions in particle systems. His most cited work “Bound state of heavy quarks using a general polynomial potential”—proposes novel models in quantum chromodynamics. He also co-authored a paper on space plasma phenomena in Scientific Reports (2025), marking his entry into applied space physics. His work explores complex mathematical approaches using Nikiforov-Uvarov methods, Schrödinger equations, and analytical modeling. Through this, Ahmed contributes significantly to modern theoretical physics, bridging foundational theory with computational applications in quantum systems and astrophysical plasmas.

🌍 Impact and Influence

Ahmed’s research impact is evident through citations, interdisciplinary topics, and recognition in global journals. His 2018 publication has 35 citations, reflecting its academic reach. By addressing subjects like quark-antiquark systems and Venusian magnetospheric behavior, his work influences both particle physics and space research domains. His research contributions provide analytical tools and spectral data for understanding subatomic forces and cosmic interactions, fostering cross-disciplinary innovation. Ahmed’s influence is not just in numbers but in the applicability of his findings to future space exploration and high-energy experiments, paving paths for emerging physicists in Egypt and beyond.

📊 Academic Citations

Ahmed has co-authored six notable publications. His standout paper on heavy quarks (2018) is cited 35 times, while other works such as the meson spectra (2022) and spin splitting (2020) have also drawn attention. His arXiv preprint and additional contributions collectively amount to over 50 citations, underscoring a growing academic presence. Published in respected journals like Advances in High Energy Physics, Results in Physics, and Scientific Reports, his works are referenced in research related to quantum theory, plasma physics, and nuclear interactions, affirming his role as a rising voice in theoretical and applied physics research.

🧠 Research Skills

Ahmed possesses advanced research skills in mathematical modeling, data fitting, and simulation of physical systems. He is proficient in programming languages like Python, Fortran, C, C++, and analytical tools such as IDL, Matlab, and Origin software. He applies numerical methods and theoretical frameworks to solve quantum field problems and interpret experimental data. His expertise in problem-solving, statistical analysis, and computational physics allows him to work across multiple physics disciplines. Ahmed also leverages Google Drive, Microsoft Office, and scientific visualization tools to organize, communicate, and present his findings clearly and professionally.

👨‍🏫 Teaching Experience

Ahmed has served as a teaching assistant at Cairo University since 2018, supporting undergraduate and postgraduate physics courses. His role includes lab instruction, tutorial sessions, and student mentoring, making complex theories accessible to learners. His earlier experience as a literacy teacher (2011–2012) equipped him with communication and leadership skills, further honed during his military officer training. Ahmed is known for fostering student engagement, using both traditional and digital platforms. His ability to blend academic rigor with student support makes him a well-rounded educator and a role model for aspiring Egyptian physicists.

🏅 Awards and Honors

While Ahmed has not listed formal awards, his academic journey reflects prestigious participation in elite programs like Zewail University’s Theoretical Physics School and BUE’s Plasma Physics Courses. His publications in indexed journals and the 2025 article in Scientific Reports signify a high level of peer recognition. His promotion within volunteer work and successful completion of military service also indicate commendable leadership and integrity. With growing citation counts and participation in national research programs, Ahmed has laid the groundwork for future awards in physics research, education, and innovation.

🚀 Legacy and Future Contributions

Ahmed is poised to become a leading researcher in theoretical and plasma physics. With experience in quantum mechanics, space physics, and analytical modeling, he is well-positioned to contribute to cutting-edge discoveries in astrophysics and particle interactions. He envisions deeper involvement in international collaborations, contributing to Egypt’s academic global presence. By mentoring future students and publishing impactful work, he aims to leave a lasting legacy of excellence, innovation, and service. His future may include Ph.D. studies, grant-winning research, and expanding his influence across global scientific communities.

Top Noted Publications

  • Bound state of heavy quarks using a general polynomial potential
    Authors: H. Mansour, A. Gamal
    Journal: Advances in High Energy Physics
    Year: 2018

  • Meson spectra using Nikiforov-Uvarov method
    Authors: H. Mansour, A. Gamal
    Journal: Results in Physics
    Year: 2022

  • Spin splitting spectroscopy of heavy Quark and Antiquarks systems
    Authors: H. Mansour, A. Gamal, M. Abolmahassen
    Journal: Advances in High Energy Physics
    Year: 2020

  • Two body problems with magnetic interactions
    Authors: H. Mansour, A. Gamal
    Year: 2019

  • Spectroscopy of the Quarkonium Systems for Heavy Quarks
    Authors: H. Mansour, A. Gamal
    Year: 2020

 

 

Devika Phukan | The matter particles | Women Researcher Award

Dr. Devika Phukan | The matter particles | Women Researcher Award

Associate Professor at The Assam Royal Global University, Guwahati | India

Dr. Devika Phukan is a distinguished physicist and professor with a career spanning over 25 years in the domain of optics, photonics, and laser spectroscopy. Currently serving at Royal Global University, she is widely recognized for her research excellence, teaching dedication, and mentorship of doctoral scholars. Her journey is an inspiring example of a woman researcher who has significantly contributed to scientific advancement in applied physics.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📚 Early Academic Pursuits

Dr. Phukan began her academic journey at HFC Model School, Namrup (now BVFCL), followed by higher secondary education at Namrup Higher Secondary School. Her passion for physics took shape at Gargaon College, where she completed her B.Sc. in Physics, later pursuing M.Sc., M.Phil., and Ph.D. in Physics from Dibrugarh University. This solid academic foundation laid the groundwork for her career in laser physics and spectroscopy.

🧑‍🏫 Professional Endeavors

Dr. Phukan embarked on her professional career at Salt Brook Academy (1999–2001), later holding positions at Sri Revanna Siddheswaraya Institute of Technology and Rajiv Gandhi Institute of Technology, Bangalore. Since 2009, she has been an integral part of Royal Global University, contributing as a senior faculty member and researcher. Her professional trajectory reflects steady growth, leadership, and commitment to academic excellence.

🔬 Contributions and Research Focus

Dr. Phukan’s research interests include laser and nonlinear optics, optical communications, optoelectronics, and photonics, with a particular emphasis on laser spectroscopy and photonic crystal fibers. She has authored 13 peer-reviewed journal articles and several conference papers that address cutting-edge topics like soliton pulse propagation, stimulated Raman scattering, and Brillouin threshold analysis. Her recent work in ultrashort optical pulse transmission in photonic crystal fibers demonstrates her contributions to emerging technologies in fiber optics and communication systems.

🌐 Impact and Influence

Her work is cited in reputed journals such as the Journal of Optics, Pramana – Journal of Physics, and Asian Journal of Physics. Through her mentorship, two Ph.D. scholars have been awarded their degrees, while six more are currently pursuing research under her guidance. This highlights her influence in shaping the next generation of physicists and her ability to create a vibrant research ecosystem.

📈 Academic Citations and Research Skills

Dr. Phukan’s scholarly output reflects a strong command over experimental and computational techniques in nonlinear optics. While citation metrics (such as h-index) are not listed here, her consistent publication in peer-reviewed journals and collaborations with research scholars illustrate high research productivity and relevance. Her ability to translate complex physical phenomena into practical simulations and fiber models underscores her technical depth and analytical skills.

🏫 Teaching Experience

With expertise in Engineering Physics, Electrodynamics, Laser Physics, Optoelectronics, and Atomic & Molecular Physics, Dr. Phukan brings a rich interdisciplinary perspective to the classroom. Her teaching approach combines fundamental theory with real-world applications, making her courses engaging and highly relevant to modern physics and engineering students.

🏆 Awards and Honors

In recognition of her outstanding contribution to education, Dr. Phukan received the Best Faculty Award in 2015 from Gyan Sagar Institution (now Royal Global University). This honor reflects her excellence in teaching, research guidance, and dedication to institutional development.

🌟 Legacy and Future Contributions

Dr. Devika Phukan continues to inspire through her intellectual rigor, mentorship, and commitment to scientific innovation. She stands as a role model for women in STEM, particularly in physics and photonics. With her ongoing research, active Ph.D. supervision, and dedication to teaching, she is poised to make further groundbreaking contributions in fiber optics and laser-based technologies.

Publications Top Notes

Analysis of the effect of Stimulated Brillouin Scattering Threshold (SBST) and Stokes power in single mode optical fibre of different characteristic profile by simulation

  • Authors: Partha Pratim Borah, Devika Phukan, Anurup Gohain Barua
    Journal: Journal of Optics
    Year: 2025

Modelling and analysis of amplitude, spatial domain, spatial grids, width and time steps of soliton wave with reference to energy

  • Authors: Bidish Borah, Devika Phukan, Anurup Gohain Barua
    Journal: Journal of Optics
    Year: 2025

Exploring Structural and Propagation Features of Photonic Crystal Fibers for Superior Ultrashort Pulse Delivery

  • Authors: Priyanka Talukdar, Devika Phukan
    Journal: Journal of Optics
    Year: 2025

A Comparative Analysis of Basic and Enhanced Hole Structures in Photonic Crystal Fibers

  • Authors: P. Talukdar, D. Phukan
    Journal: Journal of Optics
    Year: 2024

A Comparative Exploration of Femtosecond Optical Pulse Propagation in Hollow Core Photonic Crystal Fiber and Optical Fiber

  • Author: Devika Phukan
    Journal: Webology
    Year: 2023