Girum Girma Bizuneh | Experimental methods | Best Researcher Award

Dr. Girum Girma Bizuneh | Experimental methods | Best Researcher Award

R&D project Manager at Hunan Hongyue New Energy Materials Co.Ltd. | China

Dr. Girum Girma Bizuneh is a seasoned researcher, academic, and R&D leader with specialized expertise in battery technology, electrochemistry, and materials recycling. With over 15 years of progressive experience in research and academia, he has contributed significantly to advancements in lithium-ion and lithium-sulfur batteries. He earned his Ph.D. and M.Sc. from Xiamen University, China, and held various positions in Arba Minch University (Ethiopia), Hunan University, and currently serves as R&D Manager at Hunan Hongyue New Energy Materials Recycling Co. Ltd. His work merges academic rigor with industry-driven innovation in sustainable energy storage.

👨‍🎓Profile

Scopus

ORCID

📘 Early Academic Pursuits

Dr. Bizuneh began his academic journey with a B.Sc. in Chemistry from Arba Minch University, Ethiopia, in 2007. His early interest in chemical processes and materials led him to pursue higher education in China, where he completed both M.Sc. (2013) and Ph.D. (2020) degrees at Xiamen University, renowned for its strong materials science and chemistry programs. During his studies, he developed a solid foundation in electrochemistry, particularly ion transfer across interfaces and battery chemistry, setting the stage for his future research in advanced battery systems and electrolyte engineering.

🧑‍🔬 Professional Endeavors 

Professionally, Dr. Bizuneh has held academic and industry roles that span both teaching and research. Starting as a Lab Technician and Lecturer at Arba Minch University, he later contributed to cutting-edge battery research at Hunan University as a University Research Assistant. Since 2022, he has served as R&D Manager at Hunan Hongyue, where he oversees project direction in battery materials recycling. His unique blend of academic insight and industrial R&D acumen positions him as a critical link between scientific discovery and real-world energy solutions, especially in the context of sustainable technologies and resource recovery.

🔋 Contributions and Research Focus

Dr. Bizuneh’s research is deeply focused on next-generation energy storage technologies, including Li-ion, Li-S batteries, electrochemical capacitors, and electrolyte additive engineering. His work on interface chemistry and solid auxiliary redox couples has contributed to enhancing battery performance and life span. A significant part of his research also emphasizes eco-friendly battery recycling strategies, targeting critical materials recovery and lifecycle sustainability. His peer-reviewed publications, including in top-tier journals, demonstrate his commitment to advancing practical and scalable solutions in the field of electrochemical energy storage and recycling science.

🌍 Impact and Influence

Dr. Bizuneh has established himself as an influential figure in the global battery research community, particularly through his work on high-voltage cathode design and recyclable battery technologies. His co-authored papers have been widely cited and have significantly influenced the direction of interface engineering in energy storage. Notably, he received the Top Cited Article Award (Wiley, 2025) for his publication on carbon materials for capacitors. Through academic and industrial collaboration across China and Ethiopia, he continues to bridge research innovation and societal energy needs, fostering cross-border knowledge transfer and technological adoption.

🧠 Research Skills and Tools

Dr. Bizuneh brings a rich skill set in both experimental and computational tools used in battery research. He is proficient in electrochemical techniques, materials synthesis, and battery performance evaluation. He has expertise in scientific software such as OriginPro, ZView, ChemOffice, and EndNote. In addition, he is skilled in data analysis, interface modeling, and photo editing tools like Adobe Photoshop and Lightroom for scientific visualization. His lab leadership and project management skills enable him to effectively design, execute, and evaluate R&D programs that deliver both academic knowledge and industrial utility.

👨‍🏫 Teaching Experience

With a decade of teaching experience at Arba Minch University, Dr. Bizuneh has taught a range of undergraduate chemistry courses and supervised laboratory sessions. From Graduate Assistant to Lecturer, he demonstrated a strong commitment to academic mentorship and student development. He designed and instructed classes in physical chemistry, analytical methods, and laboratory safety and operations. His teaching style blended theoretical depth with practical application, preparing students for careers in science and technology. His contributions to curriculum development and lab management were instrumental in strengthening the university’s chemistry program infrastructure.

🏆 Awards and Honors

Dr. Bizuneh’s contributions have been formally recognized through several prestigious awards:

  • 🏅 Top Cited Article Award (2025) from Wiley for impactful research on electrochemical capacitors

  • 🎓 Heguang Yangtze River Scholarship (2019) awarded by Xiamen University for academic excellence

  • 🌟 Xiamen University International Student Scholarship (2020)
    These honors underscore his scientific impact, academic performance, and leadership potential. They also highlight his dedication to advancing innovative and sustainable energy solutions. His work continues to influence both academic and industrial communities in the fields of battery science and material chemistry.

🚀 Legacy and Future Contributions

Dr. Bizuneh is poised to leave a lasting legacy in the field of electrochemical energy storage, especially through his efforts in battery recycling and sustainable materials development. His current R&D leadership role positions him to translate academic insights into industrial practices, particularly in addressing battery waste challenges. Looking forward, he aims to develop green recycling technologies, solid-state battery systems, and contribute to policy and innovation frameworks for clean energy. His cross-disciplinary and international background makes him a valuable contributor to global energy transformation, and a mentor for the next generation of scientists and innovators.

Top Noted Publications

High Performance Li||NMC622 Battery Enabled by Multi-Functional Electrolyte Additive Chemistry

  • Authors: Girum Girma Bizuneh, Amir Mahmoud Makin Adam, Chunlei Zhu, Junda Huang, Huaping Wang, Zhongsheng Wang, Daxiong Wu, Lei Guo, Maryam Chafiq, Young Gun Ko
    Journal: Electrochimica Acta
    Year: 2025

Promoting the Sulfur Conversion Kinetics via a Solid Auxiliary Redox Couple Embedded in the Cathode of Li–S Batteries

  • Authors: Girum Girma Bizuneh, Jingmin Fan, Pan Xu, Ruming Yuan, Lin Cao, Mingsen Zheng, Quan-Feng Dong
    Journal: Sustainable Energy & Fuels
    Year: 2020

LaLiO₂-Based Multi-Functional Interlayer for Enhanced Performance of Li–S Batteries

  • Authors: Girum Girma Bizuneh
    Journal: Journal of The Electrochemical Society
    Year: 2019

Solvation Effect Facilitates Ion Transfer across Water/1,2‐Dichloroethane Interface

  • Authors: Nsabimana, J.; Nestor, U.; Girma, G.; Pamphile, N.; Zhan, D.; Tian, Z.-Q.
    Journal: ChemElectroChem
    Year: 2016

Facilitated Li⁺ Ion Transfer across the Water/1,2-Dichloroethane Interface by the Solvation Effect

  • Authors: Girum Girma
    Journal: Chemical Communications (Chem. Commun.)
    Year: 2014

 

 

Madeha Awad | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Madeha Awad | Experimental methods | Best Researcher Award

Sohag university  | Egypt

Dr. Madeha Ahmed Aboelfadl Awad is an Associate Professor in the Physics Department at the Faculty of Science, Sohag University, Egypt. With a career spanning nearly two decades in materials science and nanotechnology, she has become a prominent figure in the synthesis and characterization of advanced nanostructured materials for industrial and environmental applications. Dr. Awad is recognized for her dedication to both scientific research and academic development, contributing significantly to the Egyptian scientific community.

👨‍🎓Profile

Google scholar

Scopus

🎓 Early Academic Pursuits

Dr. Awad began her academic journey with a B.Sc. in Physics from Sohag University in 2003, graduating with a very good grade. She went on to earn an M.Sc. in Solid State Physics in 2008, where she investigated chalcogenide systems a foundation that set the stage for her specialization in material sciences. Her academic excellence continued with a Ph.D. in Nanomaterials Physics in 2015, focusing on the growth and characterization of ZnO-based nanomaterials, a vital material in modern optoelectronic and energy applications.

🧪 Professional Endeavors

Since joining the Sohag University faculty in 2004 as a demonstrator, Dr. Awad has steadily progressed through academic ranks, becoming an Assistant Lecturer (2013), Lecturer (2015), and finally Associate Professor (2020). Her career reflects a sustained commitment to both academic excellence and institutional service. In addition to her teaching and research, she has held leadership roles, including Director of the Credibility and Intellectual Property Unit, playing a vital part in raising awareness about intellectual property rights and research ethics.

🔬 Contributions and Research Focus

Dr. Awad’s primary research is rooted in the synthesis of nanomaterials across various dimensions 0D, 1D, 2D, and 3D using advanced techniques like sputtering, physical vapor deposition (PVD), chemical vapor deposition (CVD), and electron beam evaporation. Her work emphasizes characterization using state-of-the-art tools such as XRD, XPS, SEM, TEM, AFM, DSC, and TGA, making her a versatile experimental physicist. Her research outcomes are directly applied to real-world challenges in solar energy, water purification, and biomedicine.

🌍 Impact and Influence

Dr. Awad’s contributions are particularly relevant to sustainable development and clean energy. Her research on photocatalytic materials, metal oxides, and optoelectronic devices supports the transition to greener technologies. As a result, her work has an evident impact on addressing climate change, environmental pollution, and public health challenges.

📚 Academic Publications

She has authored multiple peer-reviewed publications in international scientific journals, including Physica Scripta and the Journal of Sustainable Food, Water, Energy and Environment. Her recent works in 2025 reflect continued scholarly productivity and a commitment to interdisciplinary research. These publications highlight the practical application of her materials in pollution degradation, photodetectors, and biological growth studies.

🧠 Research Skills

Dr. Awad demonstrates exceptional skills in materials characterization, experimental design, and project management. She is adept at conducting analytical tests using complex laboratory equipment and integrates findings across multiple techniques to evaluate material performance. Her ability to write and manage research projects related to energy and water positions her as a key contributor in applied research arenas.

👩‍🏫 Teaching Experience

Beyond the lab, Dr. Awad is a dedicated educator, delivering theoretical physics courses to undergraduate students and supervising graduate theses and senior projects. She also plays an instrumental role in developing laboratory infrastructure, guiding demonstrators, and innovating undergraduate experiments, reflecting her strong commitment to academic excellence and mentorship.

🏆 Awards and Honors

Dr. Awad has earned respect not only through research but also through her administrative and academic service. She was appointed to the Scientific Committee of the Faculty of Science, where she helped establish a scientific journal for the Physics Department an initiative considered pioneering within her institution. While specific awards are not listed, her appointments and leadership roles signify a high level of institutional trust and recognition.

🚀 Legacy and Future Contributions

As a leader in nanomaterials research in Upper Egypt, Dr. Awad is shaping the future of industrially relevant and sustainable materials. Her contributions to intellectual property awareness, research capacity-building, and student mentorship lay a strong foundation for future generations of scientists. With continued focus on international collaboration, patentable innovations, and expanded research funding, her work is poised to achieve greater global impact in the years ahead.

Top Noted Publications

Photocatalytic characteristics of indium oxide, copper oxide and indium oxide/copper oxide thin films on plastic waste substrates for organic pollutants degradation

  • Authors: M. Mohery, S. H. Mohamed, K. A. Hamam, A. Mindil, S. Landsberger, M. A. Awad
    Journal: Physica Scripta
    Year: 2025

Influence of oxygen flow rates on the optoelectronic properties SnO₂ thin films

  • Authors: M. A. Awad, Eman R. Abaza, Essam R. Shaaban
    Journal: Sohag Journal of Science
    Year: 2025

A comparison between the effect of zinc oxide and zinc oxide nanoparticles on the growth and some metabolic processes of Cosmarium sp

  • Authors: Asmaa Bakr, M. A. Awad
    Journal: Journal of Sustainable Food, Water, Energy and Environment
    Year: 2025

Highly sensitive TiO₂ based photodetector for environmental sensing applications

  • Authors: S. H. Mohamed, Mohamed Rabia, M. A. Awad, Mohamed Asran Hassan
    Journal: Journal of Sustainable Food, Water, Energy and Environment
    Year: 2025

Optoelectronic characteristics of In₂O₃/CuO thin films for enhanced vis‑light photodetector

  • Authors: A. M. Abd El‑Rahman, S. H. Mohamed, A. Ibrahim, Ali A. Alhazime, M. A. Awad
    Journal: Journal of Materials Science: Materials in Electronics
    Year: 2024

 

Kriti Ranjan Sahu | Experimental methods | Best Researcher Award

Assist. Prof. Dr. Kriti Ranjan Sahu | Experimental methods | Best Researcher Award

Dr. Kriti Ranjan Sahu is a distinguished physicist and academic leader, currently serving as the Head of the Department of Physics and Assistant Professor at Bhatter College, Dantan (Autonomous) in Paschim Medinipur, West Bengal, India. With a strong background in material science, applied physics, and experimental techniques, Dr. Sahu has made pioneering contributions across multiple fields of science including piezoelectric materials, superconductivity, and optical technologies.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📘 Early Academic Pursuits

Dr. Sahu’s academic journey began in Tickrapara Ambikyamoye High School, culminating in his B.Sc in Physics from P.K. College, Contai under Vidyasagar University in 2002. He pursued his M.Sc in Physics from G.G.D. University, Bilaspur, securing a strong academic footing with 64.39% marks in 2004. He earned his PhD in 2016 from Jadavpur University, working under Prof. Dr. Udayan De (Retd. Senior Scientist at VECC, Kolkata) with a thesis focused on “Study of Some Piezoelectric and Other Oxides and of Their Polymeric Composites for Applications“.

🧑‍🏫 Professional Endeavors

Dr. Sahu began his teaching career as a Lecturer and HoD in Egra S.S.B. College in 2005, later transitioning to Bhatter College in 2019 as a full-time Assistant Professor and Department Head. With over 19 years of academic service, he is a veteran educator deeply committed to student-centric scientific inquiry and interdisciplinary learning.

🧪 Contributions and Research Focus

Dr. Sahu has spearheaded numerous innovative research projects and groundbreaking discoveries. He developed a novel and safe technique for preparing orthorhombic PbNb₂O₆ piezoelectric material in 2014, widely used in nuclear imaging sensors. In 2020, he reported a surprising ~8°C enhancement in the superconducting transition temperature of Fe-based superconductors due to Ar⁶⁺ ion beam irradiation. In 2022, he invented a new laser-based experimental method for measuring refractive indices in solid materials, suitable for undergraduate laboratories. He also discovered a new natural cellulosic fiber from Cyperus compactus (2023), and synthesized high-quality Na₂O–ZnO–TeO₂ glasses for optical communication (2020–2023).

🌐 Impact and Influence

Dr. Sahu’s work has gained national and international recognition. His cutting-edge research has been published in top-tier journals like Physica C, Carbohydrate Polymer Technologies, Glass Physics and Chemistry, and Journal of Physics and Chemistry of Solids. His findings in superconductivity and piezoelectric materials have laid foundational work for future advancements in sensor technology, nuclear applications, and sustainable electronics.

📚 Academic Cites and Publications

Dr. Sahu has made extensive contributions to peer-reviewed literature with numerous publications across Q1 to Q4 journals. Notably, he reported a remarkable 50% increase in superconducting critical temperature (Tc) due to ion implantation, published in Physica C (2025). His work on the characterization of a new natural cellulosic fiber appeared in Carbohydrate Polymer Technologies (2023). He also introduced a laser-based refractive index measurement technique featured in The Physics Teacher (2022). Additionally, Dr. Sahu has co-authored several papers on glass materials, organic solar cells, and the effects of ion irradiation, showcasing his broad research expertise.

🧠 Research Skills

Dr. Sahu possesses a wide range of research skills encompassing material synthesis, including piezoelectrics, superconductors, EMI shielding composites, and glass materials. He is proficient in advanced characterization techniques such as XRD, UV-Vis spectroscopy, SEM, TEM, FTIR, DSC, DTA, TGA, impedance analysis, and vector network analysis (VNA). His expertise also extends to device fabrication, particularly in creating organic solar cells. Additionally, Dr. Sahu has conducted numerous irradiation experiments using gamma rays and ion beams at renowned facilities like UGC-DAE, IUAC, and SAMEER, reflecting his strong interdisciplinary research capabilities.

👨‍🏫 Teaching Experience

Dr. Sahu has nearly two decades of teaching experience. He has been instrumental in integrating innovative lab experiments, interdisciplinary research modules, and undergraduate research projects into college curricula. His initiative, BASIS (Bengal Academic Society for Interactive Sciences), has helped UG/PG students showcase poster-based research across colleges.

🏆 Awards and Honors

  • 🥇 International Research Award (2020) by RULA and World Research Council for outstanding work on piezoelectric spectroscopy.

  • 📜 Certificate of Publication from Thermochimica Acta for significant findings on Nb₂O₅ phase in PbNb₂O₆ formation.

  • 🧾 Life Member of Indian Association of Physics Teachers (IAPT).

📝 Editorial Roles and Peer Review

  • Associate Editor: Bhatter College Journal of Multidisciplinary Studies, since 2023.

  • Editorial Member: International Journal of Materials Science and Applications (USA).

  • Reviewer: International Journal of Energy Research, Material Science Research India.

🔬 Legacy and Future Contributions

Dr. Kriti Ranjan Sahu continues to inspire scientific curiosity through poster-based symposiums, interactive webinars, and hands-on experimental training under the umbrella of BASIS. His commitment to low-cost science education, research democratization, and young investigator mentorship ensures a lasting impact on the next generation of physicists and applied researchers. Looking ahead, Dr. Sahu aims to bridge research with industry, focusing on green technologies, high-Tc superconductors, and materials for next-gen optics and electronics.

Top Noted Publications

Superconducting Single Crystals Show About 50% Increase of the Superconducting Critical Temperature after Ar Ion Implantation

  • Authors: Sahu, K.R.; Wolf, T.; Mishra, A.K.; Chakraborty, K.R.; Banerjee, A.; Ganesan, V.; De, U.
    Journal: SSRN (Other)
    Year: 2025

Characterization of new natural cellulosic fibers from Cyperus compactus Retz. (Cyperaceae) Plant

  • Authors: Bhunia, A.K.; Mondal, D.; Sahu, K.R.; Mondal, A.K.
    Journal: Carbohydrate Polymer Technologies and Applications
    Year: 2023

Enhancement of Optical and Electrical Properties of Pr³⁺ Doped Na₂O–ZnO–TeO₂ Glass Materials

  • Authors: Mirdda, J.N.; Mukhopadhyay, S.; Sahu, K.R.; Goswami, M.N.
    Journal: Glass Physics and Chemistry
    Year: 2023

Modification of Optical Bandgap and Formation of Carbonaceous Clusters Due to 1.75 MeV N⁵⁺ Ion Irradiation in PET Polymers and Search for Chemical Reaction Mechanisms

  • Authors: Prasad, S.G.; Lal, C.; Sahu, K.R.; De, U.
    Journal: Biointerface Research in Applied Chemistry
    Year: 2023

Ultrastructural and Spectroscopic Analysis of Lignin of Stone Cells in Mimusops elengi L. (Sapotaceae) Fruit Mesocarp

  • Authors: Khatun, M.; Sahu, K.R.; Mondal, A.K.
    Journal: Biointerface Research in Applied Chemistry
    Year: 2023

 

 

Aleksandra Wierzbicka | Experimental methods | Women Researcher Award

Dr. Aleksandra Wierzbicka | Experimental methods | Women Researcher Award

Institute of Physics, Polish Academy of Sciences | Poland

Dr. Aleksandra Wierzbicka is a highly accomplished physicist and materials science researcher, currently serving as an Assistant Professor at the Institute of Physics of the Polish Academy of Sciences (IFPAN) in Warsaw. With over a decade of expertise in X-ray diffraction, epitaxy techniques, and nanostructure analysis, she is recognized for her contributions to both scientific research and education. Her work bridges fundamental physics and practical applications in nanoelectronics, optoelectronics, and photonics.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Aleksandra began her academic journey at the University of Warsaw, earning her undergraduate degree in Physics, specializing in Material Physics and Optics. She continued with a Master’s degree in X-ray Structural Research, where she explored mixed semiconductor crystals. Her deep interest in structural studies of materials led her to pursue a PhD at the Institute of Physics (PAS), where she conducted pioneering research on epitaxial lateral overgrowth structures, focusing on stress and defects in semiconductors using X-ray diffraction and topography techniques.

🧪 Professional Endeavors

Since 2010, she has held the position of Assistant Professor at IFPAN, where her role spans scientific research, grant writing, student supervision, and international collaborations. In parallel, she has also contributed to physics education at the Jan Nowak-Jeziorański Community Primary School No. 1 STO, demonstrating her dedication to science communication and youth development.

🔬 Contributions and Research Focus

Dr. Wierzbicka has been at the forefront of innovative epitaxial growth techniques, particularly molecular beam epitaxy (MBE) and liquid-phase epitaxy (LPE). Her work emphasizes the structural characterization of GaN nanowires, core-shell structures, and low-dimensional semiconductor heterostructures. She is also an expert in high-resolution X-ray diffraction and synchrotron-based techniques, contributing to the understanding of lattice disorder, defect distribution, and internal electric fields in complex materials.

🌍 Impact and Influence

Her research has been instrumental in numerous European Union-funded projects, including COST actions, OPUS, SONATA, and NanoBiom, positioning her as a key player in collaborative science. As a project manager and contractor in various high-impact studies, her work has enabled breakthroughs in semiconductor device engineering, sensor technology, and photonics. Her invited talks—such as at CMD 31 in Braga, Portugal further reflect her international recognition.

📊 Academic Citations

Dr. Wierzbicka is the author of 63 peer-reviewed scientific publications, with a citation count exceeding 550 (as per Web of Science). Her ResearcherID (C-8880-2016) and ORCID (0000-0003-1379-5941) profiles showcase her scholarly contributions and visibility in the field of solid-state physics and nanomaterials.

🧠 Research Skills

Aleksandra possesses specialized expertise in:

  • High-resolution X-ray diffraction

  • Synchrotron radiation techniques

  • MBE growth methods

  • Defect and stress analysis

  • Scientific software such as Origin, Panalytical Epitaxy, VESTA, and WinWulff

Her skills are supported by strong computational abilities and analytical rigor, critical for interpreting complex material behavior.

🧑‍🏫 Teaching Experience

In addition to her research, Dr. Wierzbicka is a committed educator, engaging both university students and school-aged learners. Her ability to translate complex physical concepts into understandable content makes her an asset in promoting STEM education. She is actively involved in mentoring and curriculum development in physics.

🏆 Awards and Honors

Dr. Wierzbicka received her PhD with honors, and her continuous involvement in competitive grant programs like Opus, Sonata, and PBS demonstrates the trust placed in her by the scientific community. Being selected as manager and principal investigator in prestigious international projects (e.g., ANKA Synchrotron Facility at KIT) is a strong indicator of her recognized scientific leadership.

🌱 Legacy and Future Contributions

Aleksandra Wierzbicka’s career reflects an ongoing commitment to scientific excellence, education, and international cooperation. She is poised to contribute further to the advancement of nanoscale materials for use in next-generation electronics and optics. Her potential lies not only in her scientific output but also in her ability to inspire and mentor future generations of physicists especially young women in STEM. Looking forward, her trajectory is aligned with leading and shaping global research initiatives in epitaxy and semiconductor technology.

Publications Top Notes

📄Structural and optical properties of in situ Eu-doped ZnCdO/ZnMgO superlattices grown by plasma-assisted molecular beam epitaxy
  • Authors: Anastasiia Lysak, Aleksandra Wierzbicka, Sergio Magalhaes, Piotr Dłużewski, Rafał Jakieła, Michał Szot, Zeinab Khosravizadeh, Abinash Adhikari, Adrian Kozanecki, Ewa Przeździecka

  • Journal: Nanoscale

  • Year: 2025

📄Strain distribution in GaN/AlN superlattices grown on AlN/sapphire templates: comparison of X-ray diffraction and photoluminescence studies
  • Authors: Aleksandra Wierzbicka, Agata Kaminska, Kamil Sobczak, Dawid Jankowski, Kamil Koronski, Pawel Strak, Marta Sobanska, Zbigniew R. Zytkiewicz

  • Journal: Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

  • Year: 2025

📄Influence of the Annealing Temperature on the Properties of {ZnO/CdO}30 Superlattices Deposited on c-Plane Al₂O₃ Substrate by MBE
  • Authors: Anastasiia Lysak, Aleksandra Wierzbicka, Piotr Dłużewski, Marcin Stachowicz, Jacek Sajkowski, Ewa Przezdziecka

  • Journal: Crystals

  • Year: 2025

📄 Enhancing GaN Nanowires Performance Through Partial Coverage with Oxide Shells
  • Authors: Radoslaw Szymon, Eunika Zielony, Marta Sobanska, Tomasz Stachurski, Anna Reszka, Aleksandra Wierzbicka, Sylwia Gieraltowska, Zbigniew R. Zytkiewicz

  • Journal: Small

  • Year: 2024

📄 Effect of repeating hydrothermal growth processes and rapid thermal annealing on CuO thin film properties
  • Authors: Monika Ozga, Eunika Zielony, Aleksandra Wierzbicka, Anna Wolska, Marcin Klepka, Marek Godlewski, Bogdan J. Kowalski, Bartłomiej S. Witkowski

  • Journal: Beilstein Journal of Nanotechnology

  • Year: 2024

 

 

 

Issam Derkaoui | Materials Science | Member

Dr. Issam Derkaoui | Materials Science | Member

PHD at FSDM, Fez, Morocco

Issam Derkaoui, a PhD holder in Materials Science and Industrial Processes, specializes in the experimental development of nanocomposites with graphene derivatives and metal oxides. His research, spanning from synthesis to characterization, aims to advance nanotechnologies. Additionally, he employs first-principles calculations like DFT to model metal oxides and perovskites. With extensive post-doctoral and teaching experience, Issam has honed skills in materials characterization and synthesis methods. He has contributed to numerous publications and presented at international conferences. As a reviewer and organizer, Issam actively engages in the academic community, fostering advancements in materials science and computational physics.

Professional Profiles:

EDUCATION

Temporary Post-Doctoral Researcher Solid State Physics Laboratory, FSDM, Fez, Morocco July 2018 – 2022 Experimental: Synthesis and characterization of nanomaterials and nanocomposites. Theoretical: Validation of experimental results using DFT calculations. Permanent Teacher of Physics Preparatory classes for engineering schools, Ibn Ghazi, Meknes, Morocco 2015 – 2019 Training in Materials Characterization Techniques National Institute of Materials Physics (NIMP), Bucharest, Romania X-ray diffractometer, Raman Spectroscopy, Spectroscopic Ellipsometry Training in Material Synthesis Methods National Institute of Materials Physics (NIMP), Bucharest, Romania Magnetron Sputtering Method, Hydrothermal Method, Pyrolysis Spray Technique Vacancy for the Training: Methodology of Writing a Final Project Laboratory of Theoretical and Applied Physics, FSDM, Fez, Morocco

RESEARCH INTERNSHIPS

Associate Professor: University of Dschang, Cameroon (2019 – Present) Lecturer and Visiting Lecturer: Various institutions in Cameroon (2012 – 2019) Visiting Lecturer: National Polytechnic Bambui, Cameroon (2008 – 2009) Visiting Lecturer: Intitut Privé Polyvalent la Reforme, Cameroon (2007 – 2008)

SOFTWARE SKILLS

CASTEP Materials Studio Movavi OriginLab PVSyst PVGIS PowerPoint Quantum Espresso Python

RESEARCH AREA EXPERIENCE

Issam Derkaoui’s research interests lie in both experimental and theoretical aspects of materials science, with a focus on: Hydrothermal Synthesis Chemical synthesis methods Metal oxides (VxOy, WOx, ZnO, etc.) Graphene (GO, rGO) Nanostructures Nanocomposites Structural properties Optoelectronic properties

Research Focus:

Based on the provided publications, Issam Derkaoui’s research primarily focuses on the structural, electronic, and optical properties of various materials, including ZnO nanowires, graphene nanohybrids, and metal oxides. His investigations span experimental and theoretical approaches, employing techniques such as first-principles calculations and experimental characterization methods. Derkaoui’s work contributes to advancing our understanding of nanocomposites, thin films, and semiconductor materials, with applications ranging from optoelectronic devices to photodetectors. Overall, his research interests lie at the intersection of materials science, nanotechnology, and computational physics, aiming to drive innovations in diverse technological domains.

Publications 

  1. Optimization of the luminescence and structural properties of Er-doped ZnO nanostructures: effect of dopant concentration and excitation wavelength, cited by: 21, Publication date: 2022.
  2. Improved first-principles electronic band structure for cubic (Pm3m) and tetragonal (P4mm, P4/mmm) phases of BaTiO3 using the Hubbard U correction, Publication date: 2023.
  3. Overview of the Structural, Electronic and Optical Properties of the Cubic and Tetragonal Phases of PbTiO3 by Applying Hubbard Potential Correction, Publication date: 2023.
  4. Thermionic Emission of Atomic Layer Deposited MoO3/Si UV Photodetectors, Publication date: 2023.
  5. Effect of strontium (Sr) doping on the structural, electronic and optical properties of ZnO, by first-principles calculations, Publication date: 2023.
  6. Reduced graphene oxide-functionalized zinc oxide nanorods as promising nanocomposites for white light emitting diodes and reliable UV photodetection devices, Publication date: 2023.
  7. Impact of thickness on optoelectronic properties of α-MoO3 film photodetectors: Integrating first-principles calculations with experimental analysis, Publication date: 2023.
  8. Self-Powered UV Photodetector Utilizing Plasmonic Hot Carriers in 2D α-MoO3/Ir/Si Schottky Heterojunction Devices, Publication date: 2023.
  9. Investigation of structural and optical properties of Mg doped ZnS thin films prepared by Mist-CVD technique: Experimental and theoretical aspectsPublication date: 2024.
  10. The interface structural, electronic and optical properties of ZnO nanowires/Graphene nanohybrid (ZnO NWs/G): Experimental and theoretical DFT investigations, Publication date: 2024.

 

.