Aleksandra Wierzbicka | Experimental methods | Women Researcher Award

Dr. Aleksandra Wierzbicka | Experimental methods | Women Researcher Award

Institute of Physics, Polish Academy of Sciences | Poland

Dr. Aleksandra Wierzbicka is a highly accomplished physicist and materials science researcher, currently serving as an Assistant Professor at the Institute of Physics of the Polish Academy of Sciences (IFPAN) in Warsaw. With over a decade of expertise in X-ray diffraction, epitaxy techniques, and nanostructure analysis, she is recognized for her contributions to both scientific research and education. Her work bridges fundamental physics and practical applications in nanoelectronics, optoelectronics, and photonics.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Aleksandra began her academic journey at the University of Warsaw, earning her undergraduate degree in Physics, specializing in Material Physics and Optics. She continued with a Master’s degree in X-ray Structural Research, where she explored mixed semiconductor crystals. Her deep interest in structural studies of materials led her to pursue a PhD at the Institute of Physics (PAS), where she conducted pioneering research on epitaxial lateral overgrowth structures, focusing on stress and defects in semiconductors using X-ray diffraction and topography techniques.

🧪 Professional Endeavors

Since 2010, she has held the position of Assistant Professor at IFPAN, where her role spans scientific research, grant writing, student supervision, and international collaborations. In parallel, she has also contributed to physics education at the Jan Nowak-Jeziorański Community Primary School No. 1 STO, demonstrating her dedication to science communication and youth development.

🔬 Contributions and Research Focus

Dr. Wierzbicka has been at the forefront of innovative epitaxial growth techniques, particularly molecular beam epitaxy (MBE) and liquid-phase epitaxy (LPE). Her work emphasizes the structural characterization of GaN nanowires, core-shell structures, and low-dimensional semiconductor heterostructures. She is also an expert in high-resolution X-ray diffraction and synchrotron-based techniques, contributing to the understanding of lattice disorder, defect distribution, and internal electric fields in complex materials.

🌍 Impact and Influence

Her research has been instrumental in numerous European Union-funded projects, including COST actions, OPUS, SONATA, and NanoBiom, positioning her as a key player in collaborative science. As a project manager and contractor in various high-impact studies, her work has enabled breakthroughs in semiconductor device engineering, sensor technology, and photonics. Her invited talks—such as at CMD 31 in Braga, Portugal further reflect her international recognition.

📊 Academic Citations

Dr. Wierzbicka is the author of 63 peer-reviewed scientific publications, with a citation count exceeding 550 (as per Web of Science). Her ResearcherID (C-8880-2016) and ORCID (0000-0003-1379-5941) profiles showcase her scholarly contributions and visibility in the field of solid-state physics and nanomaterials.

🧠 Research Skills

Aleksandra possesses specialized expertise in:

  • High-resolution X-ray diffraction

  • Synchrotron radiation techniques

  • MBE growth methods

  • Defect and stress analysis

  • Scientific software such as Origin, Panalytical Epitaxy, VESTA, and WinWulff

Her skills are supported by strong computational abilities and analytical rigor, critical for interpreting complex material behavior.

🧑‍🏫 Teaching Experience

In addition to her research, Dr. Wierzbicka is a committed educator, engaging both university students and school-aged learners. Her ability to translate complex physical concepts into understandable content makes her an asset in promoting STEM education. She is actively involved in mentoring and curriculum development in physics.

🏆 Awards and Honors

Dr. Wierzbicka received her PhD with honors, and her continuous involvement in competitive grant programs like Opus, Sonata, and PBS demonstrates the trust placed in her by the scientific community. Being selected as manager and principal investigator in prestigious international projects (e.g., ANKA Synchrotron Facility at KIT) is a strong indicator of her recognized scientific leadership.

🌱 Legacy and Future Contributions

Aleksandra Wierzbicka’s career reflects an ongoing commitment to scientific excellence, education, and international cooperation. She is poised to contribute further to the advancement of nanoscale materials for use in next-generation electronics and optics. Her potential lies not only in her scientific output but also in her ability to inspire and mentor future generations of physicists especially young women in STEM. Looking forward, her trajectory is aligned with leading and shaping global research initiatives in epitaxy and semiconductor technology.

Publications Top Notes

📄Structural and optical properties of in situ Eu-doped ZnCdO/ZnMgO superlattices grown by plasma-assisted molecular beam epitaxy
  • Authors: Anastasiia Lysak, Aleksandra Wierzbicka, Sergio Magalhaes, Piotr Dłużewski, Rafał Jakieła, Michał Szot, Zeinab Khosravizadeh, Abinash Adhikari, Adrian Kozanecki, Ewa Przeździecka

  • Journal: Nanoscale

  • Year: 2025

📄Strain distribution in GaN/AlN superlattices grown on AlN/sapphire templates: comparison of X-ray diffraction and photoluminescence studies
  • Authors: Aleksandra Wierzbicka, Agata Kaminska, Kamil Sobczak, Dawid Jankowski, Kamil Koronski, Pawel Strak, Marta Sobanska, Zbigniew R. Zytkiewicz

  • Journal: Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

  • Year: 2025

📄Influence of the Annealing Temperature on the Properties of {ZnO/CdO}30 Superlattices Deposited on c-Plane Al₂O₃ Substrate by MBE
  • Authors: Anastasiia Lysak, Aleksandra Wierzbicka, Piotr Dłużewski, Marcin Stachowicz, Jacek Sajkowski, Ewa Przezdziecka

  • Journal: Crystals

  • Year: 2025

📄 Enhancing GaN Nanowires Performance Through Partial Coverage with Oxide Shells
  • Authors: Radoslaw Szymon, Eunika Zielony, Marta Sobanska, Tomasz Stachurski, Anna Reszka, Aleksandra Wierzbicka, Sylwia Gieraltowska, Zbigniew R. Zytkiewicz

  • Journal: Small

  • Year: 2024

📄 Effect of repeating hydrothermal growth processes and rapid thermal annealing on CuO thin film properties
  • Authors: Monika Ozga, Eunika Zielony, Aleksandra Wierzbicka, Anna Wolska, Marcin Klepka, Marek Godlewski, Bogdan J. Kowalski, Bartłomiej S. Witkowski

  • Journal: Beilstein Journal of Nanotechnology

  • Year: 2024

 

 

 

Issam Derkaoui | Materials Science | Member

Dr. Issam Derkaoui | Materials Science | Member

PHD at FSDM, Fez, Morocco

Issam Derkaoui, a PhD holder in Materials Science and Industrial Processes, specializes in the experimental development of nanocomposites with graphene derivatives and metal oxides. His research, spanning from synthesis to characterization, aims to advance nanotechnologies. Additionally, he employs first-principles calculations like DFT to model metal oxides and perovskites. With extensive post-doctoral and teaching experience, Issam has honed skills in materials characterization and synthesis methods. He has contributed to numerous publications and presented at international conferences. As a reviewer and organizer, Issam actively engages in the academic community, fostering advancements in materials science and computational physics.

Professional Profiles:

EDUCATION

Temporary Post-Doctoral Researcher Solid State Physics Laboratory, FSDM, Fez, Morocco July 2018 – 2022 Experimental: Synthesis and characterization of nanomaterials and nanocomposites. Theoretical: Validation of experimental results using DFT calculations. Permanent Teacher of Physics Preparatory classes for engineering schools, Ibn Ghazi, Meknes, Morocco 2015 – 2019 Training in Materials Characterization Techniques National Institute of Materials Physics (NIMP), Bucharest, Romania X-ray diffractometer, Raman Spectroscopy, Spectroscopic Ellipsometry Training in Material Synthesis Methods National Institute of Materials Physics (NIMP), Bucharest, Romania Magnetron Sputtering Method, Hydrothermal Method, Pyrolysis Spray Technique Vacancy for the Training: Methodology of Writing a Final Project Laboratory of Theoretical and Applied Physics, FSDM, Fez, Morocco

RESEARCH INTERNSHIPS

Associate Professor: University of Dschang, Cameroon (2019 – Present) Lecturer and Visiting Lecturer: Various institutions in Cameroon (2012 – 2019) Visiting Lecturer: National Polytechnic Bambui, Cameroon (2008 – 2009) Visiting Lecturer: Intitut Privé Polyvalent la Reforme, Cameroon (2007 – 2008)

SOFTWARE SKILLS

CASTEP Materials Studio Movavi OriginLab PVSyst PVGIS PowerPoint Quantum Espresso Python

RESEARCH AREA EXPERIENCE

Issam Derkaoui’s research interests lie in both experimental and theoretical aspects of materials science, with a focus on: Hydrothermal Synthesis Chemical synthesis methods Metal oxides (VxOy, WOx, ZnO, etc.) Graphene (GO, rGO) Nanostructures Nanocomposites Structural properties Optoelectronic properties

Research Focus:

Based on the provided publications, Issam Derkaoui’s research primarily focuses on the structural, electronic, and optical properties of various materials, including ZnO nanowires, graphene nanohybrids, and metal oxides. His investigations span experimental and theoretical approaches, employing techniques such as first-principles calculations and experimental characterization methods. Derkaoui’s work contributes to advancing our understanding of nanocomposites, thin films, and semiconductor materials, with applications ranging from optoelectronic devices to photodetectors. Overall, his research interests lie at the intersection of materials science, nanotechnology, and computational physics, aiming to drive innovations in diverse technological domains.

Publications 

  1. Optimization of the luminescence and structural properties of Er-doped ZnO nanostructures: effect of dopant concentration and excitation wavelength, cited by: 21, Publication date: 2022.
  2. Improved first-principles electronic band structure for cubic (Pm3m) and tetragonal (P4mm, P4/mmm) phases of BaTiO3 using the Hubbard U correction, Publication date: 2023.
  3. Overview of the Structural, Electronic and Optical Properties of the Cubic and Tetragonal Phases of PbTiO3 by Applying Hubbard Potential Correction, Publication date: 2023.
  4. Thermionic Emission of Atomic Layer Deposited MoO3/Si UV Photodetectors, Publication date: 2023.
  5. Effect of strontium (Sr) doping on the structural, electronic and optical properties of ZnO, by first-principles calculations, Publication date: 2023.
  6. Reduced graphene oxide-functionalized zinc oxide nanorods as promising nanocomposites for white light emitting diodes and reliable UV photodetection devices, Publication date: 2023.
  7. Impact of thickness on optoelectronic properties of α-MoO3 film photodetectors: Integrating first-principles calculations with experimental analysis, Publication date: 2023.
  8. Self-Powered UV Photodetector Utilizing Plasmonic Hot Carriers in 2D α-MoO3/Ir/Si Schottky Heterojunction Devices, Publication date: 2023.
  9. Investigation of structural and optical properties of Mg doped ZnS thin films prepared by Mist-CVD technique: Experimental and theoretical aspectsPublication date: 2024.
  10. The interface structural, electronic and optical properties of ZnO nanowires/Graphene nanohybrid (ZnO NWs/G): Experimental and theoretical DFT investigations, Publication date: 2024.

 

.