Nahid Chaudhary | Experimental methods | Best Researcher Award

Mrs. Nahid Chaudhary | Experimental methods | Best Researcher Award

Indian Institute of Technology Delhi | India

Dr. Nahid Chaudhary is a highly accomplished researcher and engineer specializing in nanoelectronics and semiconductor manufacturing. With a profound focus on the growth of 2D materials and van der Waals heterostructures, he has demonstrated exceptional skills in semiconductor device fabrication and advanced characterization techniques. He is dedicated to advancing the field of nanoelectronics, with a particular emphasis on sensors, optoelectronic devices, and semiconductor industries. Dr. Chaudhary is known for his interdisciplinary collaboration and innovative contributions to device performance and reliability.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 🎓

Dr. Chaudhary’s academic journey began with a B.Tech in Electronics and Communication Engineering from Uttar Pradesh Technical University (UPTU), where he graduated with a strong 80.04%. He further advanced his knowledge with an M.Tech in Nanoscience and Nanotechnology from Guru Gobind Singh Indraprastha University (GGSIU) with an impressive 80% score. His Ph.D. in Nanotechnology at Jamia Millia Islamia, New Delhi, focused on the synthesis and applications of 2D MoS2 nanosheets for optical sensing, supported by the Inspire Fellowship from the Department of Science and Technology (DST).

Professional Endeavors 💼

Dr. Chaudhary’s current role as a Postdoctoral Fellow at the Indian Institute of Technology (IIT), Delhi, sees him leading cutting-edge research in Molecular Beam Epitaxy (MBE) and Chemical Vapor Deposition (CVD) growth of 2D materials and van der Waals heterostructures. His professional work has directly impacted the advancement of semiconductor devices through innovative material development for sensors and optoelectronic devices. His contributions have spanned both academia and industry, where his work on next-generation sensors and semiconductor applications is highly regarded.

Contributions and Research Focus 🔬

Dr. Chaudhary’s research focuses on the development and growth of 2D materials, particularly in the fields of sensors, photodetectors, and supercapacitors. His work on van der Waals heterostructures has proven vital in enhancing device performance and reliability. Through his Molecular Beam Epitaxy (MBE) and Chemical Vapor Deposition (CVD) techniques, he has developed materials with promising applications in semiconductor devices. His key research has involved the optical sensing capabilities of MoS2 nanosheets, which have applications in biosensors and photocatalysis.

Impact and Influence 🌍

Dr. Chaudhary’s impact in the field of nanoelectronics is evident through his innovative research and its direct application to cutting-edge technologies. His work on photodetectors and supercapacitors is transformative, addressing crucial issues in the semiconductor industry. His research into 2D materials such as MoS2 and MoTe2 has laid the groundwork for next-generation sensors and optoelectronic devices. Dr. Chaudhary is recognized for his collaborative efforts and interdisciplinary approach, contributing to the global scientific community.

Research Skills 🛠️

Dr. Chaudhary possesses extensive expertise in Molecular Beam Epitaxy (MBE) and Chemical Vapor Deposition (CVD), crucial for the synthesis of 2D materials. He is proficient in advanced characterization techniques including X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), and UV-Vis Spectrophotometry. His skills extend to nanofabrication through maskless lithography, wet chemical etching, and photolithography, positioning him as a key innovator in semiconductor device fabrication. Additionally, his proficiency in cleanroom protocols and material processing ensures the development of high-performance devices.

Teaching Experience 🍎

Dr. Chaudhary is deeply committed to mentoring and teaching the next generation of engineers and researchers. He actively participates in training and mentorship programs in nanoelectronics and semiconductor technology, guiding students and young researchers on cutting-edge research techniques. His contributions extend to teaching at IIT Delhi, where he engages in interdisciplinary teaching and research-based courses, offering students hands-on experience in advanced material synthesis and device fabrication.

Awards and Honors 🏆

Dr. Chaudhary’s exceptional contributions have earned him several prestigious awards:

  • Inspire Fellowship from the Department of Science and Technology (DST) for his Ph.D. research.
  • Best Poster Award at ETAMS 2020 for his work on MoS2 Nanosheets for photodetector applications.
  • Best Poster Award at Nano Road Show 2020 for his groundbreaking research on MoS2-PANI Hybrid Structures for high photoresponsive properties.

His awards demonstrate his leading position in nanotechnology research.

Legacy and Future Contributions 🌱

Dr. Chaudhary is poised to leave a lasting legacy in the field of nanoelectronics. His research on 2D materials is setting the foundation for the future of semiconductor devices, particularly in photodetectors, supercapacitors, and biosensors. Looking ahead, Dr. Chaudhary aims to continue pushing the boundaries of material science and device performance. He envisions a future where his innovations can transform industries such as IoT and optical sensing, thereby shaping the next wave of technological advances in nanotechnology. His ongoing contributions will undoubtedly continue to influence and inspire researchers in the field for years to come.

Publication Top Notes

Utilizing the Ability of Few-Layer MoS2 Integrated with MOCVD-Grown ZnGa2O4 for Thermally Stable Deep Ultraviolet Detection Performance

  • Authors: T Khan, N Chaudhary, RH Horng, R Singh
    Journal: ACS Applied Electronic Materials, 6 (10), 7600-7610
    Year: 2024

High-Performance Visible-to-SWIR Photodetector Based on the Layered WS2 Heterojunction with Light-Trapping Pyramidal Black Germanium

  • Authors: K Bhattacharya, N Chaudhary, P Bisht, B Satpati, S Manna, R Singh, …
    Journal: ACS Applied Materials & Interfaces, 16 (36), 48517-48525
    Year: 2024

Quasi-dry layer transfer of few-layer MBE-grown MoTe2 sheets for optoelectronic applications

  • Authors: N Chaudhary, T Khan, K Bhatt, R Singh
    Journal: Sensors and Actuators A: Physical, 115727
    Year: 2024

Gamma-induced stress, strain and p-type doping in MBE-grown thin film MoTe2

  • Authors: N Chaudhary, K Bhatt, T Khan, R Singh
    Journal: Physical Chemistry Chemical Physics, 26 (34), 22529-22538
    Year: 2024

Comparative study of photocatalytic activity of hydrothermally synthesized ultra-thin MoS2 nanosheets with bulk MoS2

  • Authors: N Chaudhary, K Raj, A Harikumar, H Mittal, M Khanuja
    Journal: AIP Conference Proceedings, 2276 (1)
    Year: 2020

 

Syed Hamza Safeer Gardezi | Experimental methods | Best Researcher Award

Dr. Syed Hamza Safeer Gardezi | Experimental methods | Best Researcher Award

Quaid i Azam Universty, Islamabad | Pakistan

Dr. Syed Hamza Safeer Gardezi is an accomplished academic with a rich background in Physics. His academic journey began with a Bachelor’s degree in Science from the University of Punjab, Lahore, Pakistan. He then pursued M.Sc. and M.Phil. degrees in Physics from Quaid-i-Azam University, Islamabad, Pakistan, followed by a Ph.D. from the Pontifical Catholic University of Rio de Janeiro, Brazil. Dr. Gardezi’s research focused on Atomically Thin Semiconducting Transition-Metal Dichalcogenides and their electro-optical properties. With a Post-Doctoral fellowship at the Brazilian Center for Research in Physics (CBPF), Dr. Gardezi now serves as an Assistant Professor at Quaid-i-Azam University, Islamabad.

👨‍🎓Profile

Google scholar

Scopus

Orcid

🎓 Early Academic Pursuits

Dr. Gardezi’s academic journey began with a solid foundation in Physics. His undergraduate studies in Mathematics and Physics at the University of the Punjab set the stage for advanced degrees. He continued his pursuit of knowledge through M.Sc. and M.Phil. degrees at Quaid-i-Azam University, where his thesis research focused on Superconductor materials. His fascination with nanomaterials, especially Transition Metal Dichalcogenides (TMDs), led him to Brazil, where he completed his Ph.D. research on MoS2, WS2, and related materials.

💼 Professional Endeavors

Dr. Gardezi’s professional career began as a Lecturer at the Global System of Integrated Studies in Islamabad, Pakistan. He later joined Quaid-i-Azam University as an Assistant Professor, where he has contributed significantly to the Department of Physics. His professional pursuits extend internationally, particularly during his Post-Doctoral research at CBPF in Brazil, focusing on the Spin Hall Effect and Valley Hall Effect in heterostructures like YIG/MoS2.

🔬 Contributions and Research Focus

Dr. Gardezi’s primary research interests are in the synthesis and characterization of two-dimensional materials like TMDs, Graphene, and their heterostructures. He is particularly interested in chemical vapor deposition (CVD) techniques to synthesize these materials and study their optical and magnetic properties. Additionally, his work on high-temperature superconductors and solar cells highlights his commitment to exploring green technologies for sustainable energy. His focus also includes the study of defects and Raman scattering mechanisms in nanomaterials.

🌍 Impact and Influence

Dr. Gardezi has significantly influenced nanotechnology https://hep-conferences.sciencefather.com/awards-winners/and material science research, particularly in semiconducting materials and superconductors. His work on TMDs has contributed to the broader understanding of two-dimensional materials and their potential applications in electronics, photonics, and energy solutions. His research papers have been published in leading journals and widely cited by fellow scientists, helping drive forward the development of next-generation materials and technologies.

🧪 Research Skills

Dr. Gardezi is well-versed in experimental techniques and synthesis methods, including:

  • Chemical Vapor Deposition (CVD) for 2D-materials.
  • Raman and Photoluminescence (PL) Spectroscopy.
  • X-ray Diffraction (XRD) analysis.
  • Magnetic Susceptibility and Four Probe Resistivity Measurements.
  • Electron Beam Lithography and Photolithography for device fabrication.

These skills position him as a leading researcher in nanomaterials and advanced materials science.

👨‍🏫 Teaching Experience

As an Assistant Professor at Quaid-i-Azam University, Dr. Gardezi has taught various undergraduate and graduate-level courses in Physics. Some of the courses he has taught include:

  • Introductory Mechanics (Undergraduate).
  • Experimental Physics Methods and Statistical Physics (M.Phil./Ph.D. level).
  • Electromagnetism and Atomic and Molecular Physics.

In addition to his academic work, he has also contributed to laboratory sessions as a Teaching Intern at PUC-Rio in Brazil.

🏅 Awards and Honors

Dr. Gardezi has received multiple scholarships and recognitions throughout his career, including the CNPq Scholarship for his Postdoctoral Research. His contributions to material science and nanotechnology have been acknowledged at various international conferences and by leading scientific organizations, showcasing his growing impact on the global scientific community.

🕰️ Legacy and Future Contributions

Looking forward, Dr. Gardezi aims to continue pushing the boundaries of material synthesis and characterization. His ongoing research into TMDs and superconductors is set to lead to innovations in quantum computing, energy storage, and photonics. His work not only paves the way for future breakthroughs in sustainable energy solutions but also holds potential for the next generation of electronic devices. His legacy will likely be shaped by his contributions to green technologies and nanoscience.

Publications Top Notes

Enhancing Superconductivity in Cu1/2Tl1/2Ba2Ca2Cu3O10−δ with Graphene Incorporation: A Comprehensive Study

  • Authors: Syed Hamza Safeer, Nizar Saeed, Abida Saleem, Kashif Naseem, Nawazish A. Khan
    Journal: Langmuir
    Year: 2025

Assessment of the importance and catalytic role of chromium oxide and chromium carbide for hydrogen generation via hydrolysis of magnesium

  • Authors: Fei Qin, Yue Zhang, Kashif Naseem, Zhanjun Chen, Suo Guoquan, Waseem Hayat, Syed Hamza Safeer Gardezi
    Journal: Nanoscale
    Year: 2024

Photoluminescent and Magnetic Properties of Mononuclear Lanthanide-Based Compounds Containing the Zwitterionic Form of 4-Picolinic Acid as a Ligand

  • Authors: Esther Areas, Bruno Rodrigues, Ana Carolina do Nascimento, Henrique C. S. Junior, Glaucio Braga Ferreira, Fabio Miranda, Flavio Garcia, Syed Hamza Safeer, Stéphane Soriano, Guilherme Guedes
    Journal: Journal of the Brazilian Chemical Society
    Year: 2024

Exploring the magnetic behavior of potassium-doped Cu0.5Tl0.5Ba2Ca2Cu3-xKxO10-δ (x=0, 1, 2.5, 3) superconductors

  • Authors: Syed Hamza Safeer, Sadia Arooj, Anila Kanwal, Zil e Huma, Flavio Garcia
    Journal: Physica B: Condensed Matter
    Year: 2024

Automated mechanical exfoliation technique: a spin pumping study in YIG/TMD heterostructures

  • Authors: Rodrigo Torrão Victor, John Fredy Ricardo Marroquin, Syed Hamza Safeer, Danian Alexandre Dugato, Braulio Soares Archanjo, Luiz Carlos Sampaio, Flavio Garcia, Jorlandio Francisco Felix
    Journal: Nanoscale Horizons
    Year: 2023

 

 

 

Jagrutiba Gohil | Experimental methods | Best Researcher Award

Ms. Jagrutiba Gohil | Experimental methods | Best Researcher Award

Department of Physics | Sardar Patel University | India

Ms. Jagrutiba Gohil is a dedicated PhD research scholar at Sardar Patel University, focusing on material science, specifically in photodetector materials like tin selenide (SnSe) and Indium Selenide (InSe) crystals. His research, which combines experimental crystal growth techniques and nanomaterials integration, explores self-powered photodetectors for optoelectronic applications. Jagrutiba is also an instructor at RPTP Science School and has made significant strides in both academic research and teaching.

👨‍🎓Profile

Google scholar

Scopus

Orcid

🎓 Early Academic Pursuits

Ms. Jagrutiba’s academic journey began with a Bachelor’s degree in Physics from Sardar Patel University, where he achieved a solid foundation in the subject. His Master’s degree in Physics (M.Sc. and M.Phil.) further deepened his knowledge and set the stage for his doctoral research. With a passion for research, he began his Ph.D. in 2020, focusing on the growth, characterization, and application of semiconductor materials. His educational background reflects a commitment to excellence and continuous learning.

💼 Professional Endeavors

Ms. Jagrutiba’s professional career spans multiple areas, including research, teaching, and academic support. As a PhD scholar, he has contributed immensely to the field of materials science. He also plays a pivotal role in mentoring postgraduate students and supporting their research efforts. In addition to his academic commitments, he serves as a Physics instructor at RPTP Science School, where he fosters student engagement through hands-on learning and real-world physics applications.

🔬 Contributions and Research Focus

Ms. Jagrutiba’s research focus primarily lies in developing self-powered photodetectors, utilizing tin selenide (SnSe) and Indium Selenide (InSe) crystals. His work explores self-biased and self-powered devices, which promise significant advancements in optoelectronics. He has contributed to 8 peer-reviewed publications, exploring crystal growth techniques, material characterization, and the integration of nanomaterials into functional devices. His high-quality research and innovative techniques have significantly impacted the field of materials science.

🌍 Impact and Influence

Through his cutting-edge research, Jagrutiba has had a lasting impact on the field of optoelectronics, specifically in the development of self-powered photodetectors. His work has paved the way for new technologies in optical metrology, nanomaterial integration, and self-biased systems. His collaborative efforts, leadership, and research contributions have enhanced the scientific community’s understanding of semiconductor materials and their applications.

📑 Academic Cites

Ms. Jagrutiba’s work has been widely cited in prestigious journals, contributing to the advancement of photodetection technology. His publications in journals like Optical Materials, Materials Chemistry and Physics, and RSC Advances have garnered attention for their novel methodologies and innovative research. His ability to translate complex scientific concepts into meaningful applications makes his work highly valuable to the academic community.

🛠️ Research Skills

Ms. Jagrutiba has acquired a range of specialized research skills throughout his career. These include:

  • Crystal growth techniques like Direct Vapor Transport (DVT)
  • Advanced material characterization (UV-Visible spectroscopy, Hall effect, resistivity measurements, etc.)
  • Synthesis of nanoparticles, thin films, and 2D materials using techniques like hydrothermal synthesis and electrophoresis
  • Device fabrication including photodetectors, Schottky diodes, and PEC-type solar cells

These skills allow him to develop cutting-edge devices and systems that advance both optoelectronics and materials science.

🏅Awards and Honors 

Ms. Jagrutiba’s efforts have been recognized through the SHODH Fellowship (2021-2023) by the Government of Gujarat, an award that underscores his research excellence and his contributions to materials science.

🌱 Legacy and Future Contributions

Ms. Jagrutiba’s future in research and education looks promising, as he continues to explore innovative material synthesis, device fabrication, and optical metrology techniques. His work aims to significantly impact the optoelectronics industry, with self-powered photodetectors that could revolutionize energy-efficient devices and sustainable technologies. As he progresses in his Ph.D. and teaching career, he hopes to inspire future generations of scientists, contributing to the advancement of material science and optoelectronics.

Publications Top Notes

Self-biased photoelectrochemical photodetector based on liquid phase exfoliated SnSe nanosheets

  • Authors: Jagrutiba D. Gohil, Sanjay A. Bhakhar, Megha Patel, Hiren Shantilal Jagani, V.M. Pathak
    Journal: Optical Materials
    Year: 2024

Self-powered photodetector based on direct vapour transfer (DVT) method grown tin selenide (SnSe) crystals

  • Authors: Jagrutiba Gohil, Vibhutiba Jethwa, Hirenkumar Shantilal Jagani, Ankit G. Dalvaniya, Vivek M. Pathak
    Journal: Journal of Alloys and Compounds
    Year: 2023

Stability & durability of self-driven photo-detective parameters based on Sn₁₋βSbβSe (β = 0, 0.05, 0.10, 0.15, 0.20) ternary alloy single crystals

  • Authors: Jagrutiba Gohil, Hirenkumar Jagani, Vijay Dixit, Abhishek Patel, V.M. Pathak
    Journal: RSC Advances
    Year: 2022

Self-powered anisotropic photo-responsive properties of tin mono-selenide (SnSe) photodetector

  • Authors: Jagrutiba Gohil, Hirenkumar Jagani, Abhishek Patel, V.M. Pathak
    Journal: Optical Materials
    Year: 2022

Enhanced visible-light photoresponse of DVT-grown Ni-doped SnSe crystal

  • Authors: Jagrutiba Gohil, Vibhutiba Jethwa, Vivek M. Pathak, Gunvant K. Solanki, Payal Chauhan, Alkesh B. Patel, Chetan Zankat, Nashreen Patel
    Journal: Journal of Materials Science: Materials in Electronics
    Year: 2022

Sonochemical exfoliation, characterization and photoresponse of MoS₀.₅Se₁.₅ nanosheets

  • Authors: Jagrutiba Gohil, Nashreen Patel, Sanjay A. Bhakhar, G.K. Solanki, K.D. Patel, V.M. Pathak, Chetan K. Zankat, Pratik M. Pataniya, Shubham U. Gupta
    Journal: Journal of Materials Science: Materials in Electronics
    Year: 2021

 

 

 

 

Seyed Rasoul Nabavian | Experimental methods | Best Researcher Award

Assist. Prof. Dr. Seyed Rasoul Nabavian | Experimental methods | Best Researcher Award

Faculty Member at Ayatollah Boroujerdi University, Boroujerd, Iran

👨‍🎓 Profile

Summary🌟

Dr. Seyed Rasoul Nabavian is a highly accomplished civil engineer and academic leader with expertise in structural engineering, dynamic structural identification, and space structures. He holds a PhD in Civil Engineering from Noshirvani University of Technology and is currently a faculty member and head of the Civil Engineering Department at Ayatollah Boroujerdi University. With numerous awards and a strong research background, he has contributed extensively to the fields of concrete technology, modal testing, and structural health monitoring. 🏆

🎓 Education & Academic Excellence

Dr. Seyed Rasoul Nabavian holds a PhD in Civil Engineering from Noshirvani University of Technology, specializing in dynamic properties of double-layer grids. He ranked 19th nationally in the PhD entrance exam, and consistently topped his class during his Bachelor’s and Master’s studies in Structural Engineering, earning top honors and GPAs above 18.

💼Professional Experience

Dr. Nabavian has established himself as a leader in both academia and industry. As a Faculty Member and Head of the Civil Engineering Department at Ayatollah Boroujerdi University, he has mentored countless students and contributed to the growth of the department. His expertise extends beyond the classroom, as he has actively participated in various research initiatives with organizations such as the Defense Industries Organization and the Mazandaran Building Engineering System Organization. Dr. Nabavian’s professional experience also includes roles in concrete laboratory tests, geotechnical studies, and the management of residential building projects.

🌍 Contributions and Research Focus

Dr. Nabavian’s research interests focus on a wide range of cutting-edge topics in civil engineering, particularly in space structures, double-layer grids, cable domes, modal testing, and structural health monitoring. His work in Operational Modal Analysis (OMA) and output-only modal identification has contributed to advancements in damage detection and system identification of structures under dynamic conditions. Additionally, his research on recycled aggregate concrete, fiber-reinforced concrete, and impact-resistant materials aligns with the growing emphasis on sustainable construction.

👨‍🏫Teaching Experience

Dr. Nabavian has consistently demonstrated a passion for education throughout his career. He has taught at Noshirvani University of Technology, Ayatollah Boroujerdi University, and Tabari Higher Education Institute, where he has inspired students with his in-depth knowledge of civil engineering principles. His role as a thesis supervisor and advisor has allowed him to guide emerging researchers in structural health monitoring, seismic evaluation, and material science. He has supervised numerous graduate and postgraduate theses, including groundbreaking research on seismic isolation and fiber-reinforced concrete. Dr. Nabavian’s dedication to teaching is reflected in his students’ academic success and his recognition as an exemplary educator.

🛠️ Technical Skills and Software Expertise

Dr. Nabavian possesses an extensive skill set in structural analysis and engineering software, including proficiency in ARTeMIS, AutoCAD, ETABS, and MATLAB. His technical acumen is complemented by advanced knowledge of signal processing, noise reduction techniques, and data analysis, which have been applied to improve the accuracy and efficiency of output-only structural identification methods.

Top Noted Publications

Output-only modal analysis of a beam via frequency domain decomposition method using noisy data
  • Authors: S Mostafavian, SR Nabavian, MR Davoodi, B Navayi Neya
    Journal: International Journal of Engineering
    Year: 2019
Influence of nano-silica particles on fracture features of recycled aggregate concrete using boundary effect method: Experiments and prediction models
  • Authors: SR Nabavian, H Fallahnejad, A Gholampour
    Journal: Structural Concrete
    Year: 2024
Damping estimation of a double-layer grid by output-only modal identification
  • Authors: SR Nabavian, MR Davoodi, B Navayi Neya, SA Mostafavian
    Journal: Scientia Iranica
    Year: 2021
Effect of noise on output-only structural identification of beams
  • Authors: SR Nabavian, MR Davoodi, B Navayi Neya, SA Mostafavian
    Journal: Journal of Structural and Construction Engineering
    Year: 2020
Fracture characteristics of recycled aggregate concrete using work-of-fracture and size effect methods: the effect of water to cement ratio
  • Authors: H Fallahnejad, SR Nabavian, A Gholampour
    Journal: Archives of Civil and Mechanical Engineering
    Year: 2024