Feiqian Wang | Experimental methods | Best Researcher Award

Assoc Prof Dr. Feiqian Wang | Experimental methods | Best Researcher Award

Associate Professor at The First Affiliated Hospital of Xi’an Jiaotong University, China

Dr. Feiqian Wang is an Associate Professor in the Department of Ultrasound at the First Affiliated Hospital of Xi’an Jiaotong University. With a postdoctoral background in respiratory medicine and a combined master’s and doctoral degree in internal medicine, Dr. Wang has become a prominent figure in medical imaging, particularly in ultrasound and contrast-enhanced imaging. She has contributed significantly to the early diagnosis of liver diseases, microvascular invasion, and hepatocellular carcinoma. Dr. Wang holds several leadership roles, including Secretary-General of the Ultrasound Physicians Branch of the Shaanxi Medical Association, and has earned numerous national and international research grants.

🎓Profile

👩‍⚕️ Early Academic Pursuits

Feiqian Wang began her academic journey in medicine at Xi’an Jiaotong University, where she earned her undergraduate degree in Clinical Medicine (2002–2007). This foundational training laid the groundwork for her later academic and clinical achievements. Building on this, she pursued a combined Master’s and Doctoral degree in Internal Medicine, which she completed in 2012. Feiqian’s early focus on internal medicine provided her with critical clinical skills, which she later applied to the field of ultrasound imaging. She further refined her expertise as a Postdoctoral Researcher in Respiratory Medicine from 2016 to 2022, a period during which she broadened her research interests and honed her academic focus on diagnostic imaging and its applications in liver and cancer diagnostics.

🏥 Professional Endeavors

Since joining the First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Feiqian Wang has consistently advanced in her medical career. She currently holds the position of Associate Professor in the Department of Ultrasound, where she leads cutting-edge research projects while providing expert medical care. Prior to this role, Feiqian served as an Attending Physician (2019–2021) and as both a Resident and Chief-Resident (2012–2018). Her extensive clinical experience in ultrasound, particularly in hepatocellular carcinoma (HCC) imaging, has shaped her research endeavors and her contributions to the medical field. Feiqian’s professional achievements also include her positions as Secretary-General of the Ultrasound Physicians Branch of the Shaanxi Medical Association and as a reviewer for various high-impact journals.

🔬 Contributions and Research Focus

Feiqian Wang’s research focuses primarily on advanced ultrasound imaging technologies, particularly in the early diagnosis of liver diseases such as hepatocellular carcinoma (HCC). Her work integrates multiple imaging modalities, including contrast-enhanced ultrasound (CEUS) and magnetic resonance imaging (MRI), to assess microvascular invasion and other critical markers of HCC. She has secured numerous research grants, notably from the National Natural Science Foundation of China, which underscores the significance and impact of her work. Feiqian’s research into hepatocellular carcinoma, fusion imaging, and elastography technologies continues to contribute to the diagnostic precision and personalized treatment strategies in oncology. Moreover, her innovative approach to combining S-CEUS, U-CEMRI, and SWI imaging in diagnosing HCC has opened new avenues in clinical practice.

🌍 Impact and Influence

Feiqian Wang’s research has had a profound influence in the realm of diagnostic imaging, particularly in the field of oncology and liver diseases. Her pioneering work on CEUS and MRI fusion imaging, along with her nomogram models for predicting vascular patterns in HCC, has contributed to advancements in non-invasive diagnostics. Feiqian’s research has been widely published in leading medical journals such as Radiology, European Journal of Radiology Open, and Biosci Trends. These publications are frequently cited by other researchers, showcasing the broad influence of her work in the scientific community. Additionally, her contributions to patent innovations in ultrasound technology underscore her role in driving forward new medical technologies and improving clinical practices.

🏅 Academic Citations

Feiqian Wang’s research is well-recognized in the academic community, with numerous publications in high-impact journals over the past five years. Her work has earned her respect both nationally and internationally, with publications cited widely in medical and imaging literature. For example, her study on “Contrast-Enhanced Ultrasound and MRI Fusion Imaging for Hepatocellular Carcinoma Diagnosis” has become a reference point for other researchers in the field. These citations reflect the high quality of her work and its relevance to the evolving medical landscape. Feiqian’s ability to secure multiple research grants also highlights her esteemed position within academic circles, further cementing her credibility as a leading expert in her field.

🖥️ Technical Skills

Feiqian Wang is highly skilled in advanced imaging technologies, with expertise in contrast-enhanced ultrasound (CEUS), elastography, and fusion imaging techniques. She is proficient in integrating various diagnostic methods, such as S-CEUS, U-CEMRI, and SWI, to improve early detection and diagnosis of liver diseases. Her technical proficiency extends to the use of deep learning and AI models for image analysis, as evidenced by her research on breast nodule classification using deep convolutional neural networks. Feiqian’s technical acumen in ultrasound imaging not only enhances her clinical diagnostic abilities but also places her at the forefront of innovative research in the field.

🎓 Teaching Experience

As an Associate Professor in the Department of Ultrasound, Feiqian Wang plays an essential role in shaping the next generation of medical professionals. She has taught and mentored undergraduate and postgraduate students, offering training in ultrasound diagnostic techniques and medical imaging. Her commitment to education is further demonstrated by her leadership in various academic committees, including those related to ultrasound medical engineering. Feiqian’s teaching approach is grounded in practical, hands-on training, ensuring that her students acquire the necessary skills to apply diagnostic imaging techniques in clinical settings.

🌟 Legacy and Future Contributions

Feiqian Wang’s legacy is built upon her groundbreaking research, her commitment to improving diagnostic techniques, and her contributions to medical education. Her work in imaging technology has already revolutionized certain aspects of HCC diagnosis and is expected to have an enduring impact on clinical practices. As a leading figure in her field, Feiqian is poised to continue contributing to advancements in ultrasound and medical imaging technologies. In the future, she plans to further develop multimodal imaging strategies for early disease detection and improve the integration of AI and machine learning in medical diagnostics. Her ongoing research in early liver imaging diagnosis and its clinical applications promises to have a significant impact on the early detection of liver diseases, ultimately saving lives through more precise and timely interventions.

🏆 Awards and Recognition

Throughout her career, Feiqian Wang has received numerous accolades for her contributions to science and medicine. She was awarded the second prize in the 2018 Science and Technology Progress Award of Shaanxi Province for her work on microinflammation mechanisms in CKD patients. Additionally, her excellence in ultrasound imaging was recognized with the “Best Slide Making Award” in the China Contrast-Enhanced Ultrasonography Congress. These accolades, along with her academic and professional achievements, highlight her exceptional skills and dedication to advancing medical knowledge and practice.

📖Publication Top Notes

High Spatiotemporal Resolution Contrast-Free Ultrasound Microvascular Imaging Using Adaptive Weight-Based Nonlinear Compounding
    • Authors: Liyuan Jiang, Hanbing Chu, Yang Liu, Jiacheng Liu, Xiao Su, Yichen Yan, Meiling Liang, Yiran Chen, Chaoyang Zhang, Feiqian Wang et al.
    • Journal: IEEE Transactions on Instrumentation and Measurement
    • Year: 2024
A Nomogram Based on Features of Ultrasonography and Contrast-Enhanced CT to Predict Vessels Encapsulating Tumor Clusters Pattern of Hepatocellular Carcinoma
    • Authors: Litao Ruan, Jingtong Yu, Xingqi Lu, Kazushi Numata, Dong Zhang, Xi Liu, Xiaojing Li, Mingwei Zhang, Feiqian Wang
    • Journal: Ultrasound in Medicine & Biology
    • Year: 2024
Added Value of Ultrasound-Based Multimodal Imaging to Diagnose Hepatic Sclerosed Hemangioma before Biopsy and Resection
    • Authors: Feiqian Wang, Kazushi Numata, Hiromi Nihonmatsu, Makoto Chuma, Naomi Ideno, Akito Nozaki, Katsuaki Ogushi, Mikiko Tanab, Masahiro Okada, Wen Luo et al.
    • Journal: Diagnostics
    • Year: 2022
Accurate Assessment of Vascularity of Focal Hepatic Lesions in Arterial Phase Imaging
    • Authors: Feiqian Wang, Kazushi Numata, Litao Ruan
    • Journal: Radiology
    • Year: 2020

 

 

Celal Kursun | Experimental methods | Best Researcher Award

Assoc Prof Dr. Celal Kursun | Experimental methods | Best Researcher Award

Head of Materials Science and Engineering at Kahramanmaras Sutcu Imam University, Turkey

Dr. Celal Kurşun is an Associate Professor at Kahramanmaraş Sütçü İmam University, specializing in Materials Science and Engineering. He completed his postdoctoral research at the University of Wisconsin-Madison and has a strong background in the synthesis and characterization of advanced materials, including magnesium-based alloys and metallic glasses. Dr. Kurşun has held various academic positions, including Assistant Professor and Research Specialist, and has supervised numerous graduate theses.

🎓Profile

Early Academic Pursuits 📚

Dr. Celal Kurşun’s academic journey is a testament to his dedication to materials science and engineering, with a particular focus on advanced alloys, structural properties, and energy applications. His academic path began with a Bachelor’s degree in 2009, followed by a Master’s degree in 2012, where he investigated the structural and thermal properties of copper-based alloys. These early pursuits laid the foundation for his more extensive doctoral research, where he completed not one but two PhD theses. The first, completed in 2015, focused on the structural, thermal, and mechanical properties of Cu-based nanocrystalline alloys, while the second (2018) shifted focus to magnesium-based amorphous and nanocrystalline alloys, particularly their mechanical and hydrogen storage capacities. This early academic pursuit of diverse materials’ properties set the stage for his later contributions to high-impact research areas such as energy storage, radiation shielding, and alloy design.

Professional Endeavors & Postdoctoral Research 🔬

Dr. Kurşun’s professional career is distinguished by both teaching and high-level research. After earning his PhD, he undertook a postdoctoral position at the prestigious University of Wisconsin-Madison (2018-2020) within the Materials Science and Engineering Department. Here, his research concentrated on the design, synthesis, and characterization of advanced magnesium-based bulk metallic glass alloys for hydrogen storage and energy applications. This period not only sharpened his research skills but also allowed him to engage in cutting-edge projects with significant implications for sustainable energy technologies. His postdoctoral work solidified his reputation as a leading figure in the study of energy-efficient materials.

Contributions and Research Focus ⚙️

Dr. Kurşun’s research focuses on advanced materials, particularly nanostructured and metallic glass alloys. His work addresses critical challenges in energy storage, with a focus on hydrogen storage in magnesium-based alloys, which holds promise for clean energy applications. Additionally, his research on radiation shielding materials, such as boron-doped titanium alloys and Al-Gd2O3 composites, contributes to industries requiring advanced protective materials against neutron and gamma radiation, such as nuclear energy and space exploration.

Impact and Influence 🌍

Dr. Kurşun’s research has not only advanced academic knowledge but has also had significant real-world applications. His groundbreaking work on magnesium-based alloys for hydrogen storage and his innovative approaches to improving radiation shielding materials have placed him at the forefront of energy and environmental research. Furthermore, his academic leadership has had a broad impact through the mentorship of numerous graduate students, many of whom have gone on to pursue successful careers in materials science and engineering. His recognition within international scientific organizations such as the American Physical Society and The Minerals, Metals & Materials Society underscores his influence on the global materials science community.

Academic Citations 📑

Dr. Kurşun’s work has been consistently recognized and cited in leading international journals, including Journal of Materials Science: Materials in Electronics, Ceramics International, and HELIYON. His research on the structural and mechanical properties of alloys, radiation shielding, and catalytic processes is frequently cited by researchers working in similar domains, contributing to the development of novel materials and technologies. His citation record reflects the impact his work has had on advancing knowledge and innovation in materials science, energy storage, and environmental sustainability.

Technical Skills 🛠️

Dr. Kurşun possesses an extensive skill set, combining advanced experimental techniques with theoretical modeling. His technical expertise includes the design, synthesis, and characterization of amorphous and nanocrystalline alloys, as well as mechanical testing, neutron and gamma radiation shielding, and the study of thermal properties of materials. His familiarity with techniques such as arc melting, mechanical alloying, and the use of various characterization tools (e.g., X-ray diffraction, scanning electron microscopy) allows him to address complex challenges in materials science.

Teaching Experience 🍎

Throughout his career, Dr. Kurşun has demonstrated a strong commitment to teaching and mentoring students. As an Associate Professor, he has designed and taught various courses in materials science, solid-state physics, and engineering, preparing the next generation of scientists and engineers. His approach to teaching emphasizes not only the theoretical foundations of materials science but also practical, hands-on experiences that prepare students for real-world challenges. In addition to his classroom duties, Dr. Kurşun has supervised a number of graduate and undergraduate theses, helping students pursue their research interests and develop critical thinking and analytical skills.

Legacy and Future Contributions 🔮

Dr. Kurşun’s legacy is already being shaped by his continued research and mentorship, with his influence extending to both the scientific community and the educational sector. Looking ahead, Dr. Kurşun aims to deepen his work on sustainable materials for energy applications, particularly in developing alloys that can address the global demand for clean energy solutions. His research trajectory also hints at greater interdisciplinary work, exploring areas where materials science meets environmental sustainability, energy storage, and the circular economy.

Publication Top Notes📖

Structure, mechanical, and neutron radiation shielding characteristics of mechanically milled nanostructured (100-x)Al-xGd2O3 metal composites
  • Authors: Celal Kursun, Meng Gao, Ali Orkun Yalcin, Khursheed A. Parrey, Yasin Gaylan
    Journal: Ceramics International
    Year: 2024
Unraveling structural relaxation induced ductile-to-brittle transition from perspective of shear band nucleation kinetics in metallic glass
  • Authors: Meng Gao, Celal Kursun, John H. Perepezko
    Journal: Journal of Alloys and Compounds
    Year: 2023
Synthesis and mechanical properties of (Ni70Si30)100−x Fe x (x = 0, 5, 10) alloys
  • Authors: Celal Kursun, Ahmet Muslim Aksoy
    Journal: Emerging Materials Research
    Year: 2019
Mechanical properties, microstructural and thermal evolution of Mg65Ni20Y15−xSix (X = 1, 2, 3) alloys by mechanical alloying
  • Authors: Celal Kursun, Musa Gogebakan, Hasan Eskalen
    Journal: Materials Research Express
    Year: 2018
The Effect of Milling Time on the Synthesis of Cu54Mg22Ti18Ni6 Alloy
  • Authors: Celal Kursun, Musa Gogebakan
    Journal: 9th International Physics Conference of the Balkan Physical Union (Bpu-9)
    Year: 2016

 

 

Ziyao Jie | Experimental methods | Best Researcher Award

Dr. Ziyao Jie | Experimental methods | Best Researcher Award

Postdoc at State Grid Jibei Electric Power Co., Ltd. Research Institute in China

Ziyao Jie is a postdoctoral researcher at the State Grid Jibei Electric Power Research Institute. He holds a Ph.D. in Electrical Engineering from Tsinghua University, where his research centered on the microwave plasma-based synthesis of nanomaterials for lithium-ion battery applications. Throughout his academic career, Ziyao has made notable contributions to sustainable energy and plasma science, with a focus on improving energy storage technologies. His work on graphene-coated silicon nanomaterials addresses critical issues in battery performance, such as energy capacity and cycling stability. Ziyao’s research has been widely recognized, with multiple patents and publications in high-impact journals.

Profile:

Education:

Ziyao Jie earned his Ph.D. in Electrical Engineering from Tsinghua University, where he specialized in plasma science and nanomaterials synthesis under the guidance of Professor Guixin Zhang. His doctoral thesis focused on the development of microwave plasma methods for producing graphene-coated silicon nanoparticles, designed to enhance lithium-ion battery performance. During his studies, Ziyao gained a comprehensive understanding of high-voltage technologies, nanomaterial properties, and energy storage solutions, which equipped him to tackle real-world challenges in sustainable energy. His academic excellence is reflected in his deep knowledge of plasma diagnostics and high-temperature material synthesis.

Professional Experience:

Ziyao Jie has amassed significant experience in plasma science and energy storage. Following his doctoral research at Tsinghua University, where he developed innovative methods for synthesizing advanced materials for batteries, he continued as a postdoctoral researcher at the State Grid Jibei Electric Power Research Institute. His current work focuses on high-voltage and energy storage systems, contributing to the development of large-scale, sustainable energy solutions. Ziyao has collaborated on key projects such as the Beijing Science and Technology Planning Project, and his expertise spans the areas of nanomaterial synthesis, waste treatment with plasma, and renewable energy applications.

Research focus:

Ziyao Jie’s research focuses on the intersection of plasma science, nanomaterials, and sustainable energy. His primary area of interest is the synthesis of nanomaterials using microwave plasma technologies, with a particular focus on developing advanced materials for energy storage, such as graphene-coated silicon nanoparticles for lithium-ion batteries. His work aims to address key challenges in energy density, stability, and scalability for future battery technologies. Ziyao is also involved in developing plasma-based waste treatment systems, including medical waste management, using high-temperature plasma torches. His research is distinguished by its potential to revolutionize both energy storage and environmental sustainability.

Awards and Honors:

Ziyao Jie has received numerous accolades for his groundbreaking work in plasma science and nanomaterials. His research on microwave plasma-based synthesis earned him recognition in energy storage circles, particularly for his contributions to improving lithium-ion battery technology. Ziyao was a participant in the Beijing Science and Technology Planning Project, which recognized his innovative work on high-energy and high-voltage technologies. Additionally, his patented inventions, which include advanced methods for medical waste treatment and nanomaterial applications, have further established his reputation as a leading researcher. Ziyao’s contributions have also led to high citation indices, highlighting his influence in the academic community.

Publication Top Notes:

  • Mechanisms of Gas Temperature Variation of the Atmospheric Microwave Plasma Torch
    Z. Jie, C. Liu, S. Huang, G. Zhang
    Journal of Applied Physics, 129 (23), 2021
    Citations: 12
  • Microwave Plasma Torches for Solid Waste Treatment and Vitrification
    Z. Jie, C. Liu, D. Xia, G. Zhang
    Environmental Science and Pollution Research, 30 (12), 32827-32838, 2023
    Citations: 10
  • Imaging Diagnostics and Gas Temperature Measurements of Atmospheric-Microwave-Induced Air Plasma Torch
    S. Huang, C. Liu, Z. Jie, G. Zhang
    IEEE Transactions on Plasma Science, 48 (6), 2153-2162, 2020
    Citations: 10
  • Polymer Dielectrics with Outstanding Dielectric Characteristics via Passivation with Oxygen Atoms through C–F Vacancy Carbonylation
    T.Y. Wang, X.F. Li, Z. Jie, B.X. Liu, G. Zhang, J.B. Liu, Z.M. Dang, Z.L. Wang
    Nano Letters, 23 (18), 8808-8815, 2023
    Citations: 8
  • An Atmospheric Microwave Plasma-Based Distributed System for Medical Waste Treatment
    Z. Jie, C. Liu, D. Xia, G. Zhang
    Environmental Science and Pollution Research, 30 (17), 51314-51326, 2023
    Citations: 6
  • Surface-Wave-Sustained Plasma Synthesis of Graphene@Fe–Si Nanoparticles for Lithium-Ion Battery Anodes
    Z. Jie, Z. Zhang, X. Bai, W. Ma, X. Zhao, Q. Chen, G. Zhang
    Applied Physics Letters, 123 (11), 2023
    Citations: 3
  • Determination of 915-MHz Atmospheric Pressure Air Microwave Plasma Torch (MPT) Parameters
    Z. Jie, C. Liu, D. Xia, Z. Zhang, X. Zhao, G. Zhang
    IEEE Transactions on Plasma Science, 51 (2), 456-465, 2023
    Citations: 2
  • The Treatment of Medical Waste by Atmospheric Microwave Plasma
    D. Xia, C. Liu, Z. Jie, G. Zhang
    2021 IEEE International Conference on Plasma Science (ICOPS), 2021
    Citations: 2
  • Microwave Plasma Torch for Solid Waste Treatment
    Z. Jie, C. Liu, D. Xia, G. Zhang
    IET Digital Library, 2021
    Citations: 2
  • Continuous Batch Synthesis with Atmospheric-Pressure Microwave Plasmas
    Z. Jie, T.Y. Wang, S. Huang, X. Bai, W. Ma, G. Zhang, N. Luo
    iScience, 27 (8), 2024
    Citations: N/A

Conclusion:

Ziyao Jie is a strong candidate for the Best Researcher Award, with his groundbreaking contributions in plasma science and energy storage technologies. His research has direct implications for sustainable energy solutions, positioning him at the forefront of innovations in high-energy physics and computational science. His achievements, particularly his patents and numerous high-impact publications, showcase his potential to make lasting contributions to academia and industry, making him highly suitable for this prestigious award.