Chengyan Liu | Advanced Computing | Best Researcher Award

Prof. Chengyan Liu | Advanced Computing | Best Researcher Award

Henan University | China

Professor Chengyan Liu is a distinguished scholar in Condensed Matter Physics and Computational Physics, currently serving as a Full Research Professor at the Institute of Future Technologies, Henan University. He is a Doctoral Supervisor and a recognized Yellow River Scholar. With academic roots from Fudan University and an international postdoctoral stint at UC Irvine, Prof. Liu has become a leading authority on defect physics, semiconductor interfaces, and photoelectronic materials. His prolific output includes over 20 high-impact publications, multiple national research grants, and a reputation for pushing the boundaries of theoretical materials science.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Prof. Liu’s academic journey began with a B.Sc. in Physics from Zhengzhou University in 2011, followed by an M.Sc. in Theoretical Physics at the same institution in 2014. He then pursued a Ph.D. at Fudan University, completing it in 2017 under a rigorous theoretical physics program. During this formative period, he laid a solid foundation in quantum theory, computational modeling, and condensed matter systems, which would become central to his future research. His early interest in semiconductor materials and grain boundary phenomena steered him toward the path of advanced computational materials physics.

🏛️ Professional Endeavors 

After earning his Ph.D., Prof. Liu expanded his expertise as a postdoctoral researcher at the University of California, Irvine, where he worked in the Department of Astrophysics. He returned to China to join Henan University, rapidly progressing from Lecturer (2020) to Distinguished Professor, and most recently, a Fast-Tracked Full Professor (2024) under Henan’s elite talent program. At Henan, he spearheads critical research in the Quantum Materials and Quantum Energy Lab, leads provincial and national-level projects, and serves as a doctoral mentor. His role bridges academic leadership, institutional innovation, and scientific advancement.

🔬 Contributions and Research Focus

Prof. Liu specializes in theoretical studies of defect physics, excited-state dynamics, and optoelectronic behavior in multicomponent semiconductors. His pioneering work on Cu₂ZnSn(SSe)₄ solar cells, defect passivation, and p-type transparent conductors has led to material innovations critical for next-generation solar energy devices. He is known for integrating first-principles calculations, nonadiabatic molecular dynamics, and interface engineering to resolve longstanding efficiency bottlenecks in photovoltaics. His research also touches on phonon imaging, bandgap tuning, and nanostructure thermodynamics, cementing his role as a cross-disciplinary leader in materials computation and energy physics.

🌏 Impact and Influence

Prof. Liu’s research has significantly impacted the fields of photovoltaics, defect engineering, and quantum materials. His work in kesterite solar cells has advanced understanding of Voc-deficits and interface stability, directly influencing experimental design across China and abroad. He has published in Nature, Advanced Energy Materials, and npj Computational Materials, garnering citations and collaborations globally. As a corresponding or first author on most of his publications, he shapes scholarly discourse and sets research directions. His mentorship and visibility in national projects further amplify his influence on China’s renewable energy research landscape.

📚 Academic Citations

Prof. Liu has authored or co-authored over 20 peer-reviewed publications in journals with impact factors exceeding 50 (Nature, AFM, Nano Letters, etc.). His works are widely cited in the fields of materials chemistry, physics, and energy science. His contributions to defect theory, interface passivation, and electronic structure analysis are frequently referenced by experimentalists and theorists alike. Notably, his 2021 Nature paper on single-defect phonons and his 2017 work in Advanced Energy Materials are seminal in their respective domains. His consistent authorship and citation metrics mark him as a globally recognized scholar in computational materials science.

🧠 Research Skills

Prof. Liu possesses deep expertise in first-principles modeling, density functional theory (DFT), nonadiabatic dynamics, and defect analysis. His ability to combine quantum simulations with applied material design allows him to bridge theory and experiment. He has demonstrated prowess in bandgap engineering, passivation chemistry, and interface defect control. His skillset includes advanced tools like VASP, Quantum ESPRESSO, and phonon analysis frameworks. He leads multi-disciplinary teams, mentors graduate researchers, and designs custom simulation frameworks to address complex materials problems placing him at the frontier of computational materials innovation.

🎓 Teaching Experience

Since 2020, Prof. Liu has taught Advanced Quantum Mechanics for graduate students, delivering 54 hours annually. He is renowned for blending rigorous theoretical depth with computational applications, making abstract quantum concepts tangible. His textbook contribution, Study Guide to Griffiths’ Quantum Mechanics, demonstrates his pedagogical commitment and ability to clarify complex physics. Students under his mentorship have contributed to publications, signaling his effectiveness in academic training and talent development. Prof. Liu emphasizes problem-solving, analytical thinking, and research integration, providing a strong foundation for emerging physicists and materials scientists under his guidance.

🏆 Awards and Honors

Prof. Liu was awarded the prestigious Yellow River Scholar title a top provincial honor recognizing distinguished academic performance. His selection as a Fast-Tracked Full Professor under Henan’s High-Level and Urgently Needed Talent Program attests to his scientific merit and leadership potential. He has received multiple NSFC research grants and is the recipient of the Henan Excellent Young Scientists Fund. His inclusion on the Board of the Henan Physical Society further highlights his stature in the academic community. These honors reflect not only his past accomplishments but also his promise for future breakthroughs.

🚀 Legacy and Future Contributions

Prof. Liu is poised to leave a lasting legacy in quantum materials research and solar energy innovation. His pioneering work on transparent conductors, defect-tolerant semiconductors, and carrier lifetime enhancement will continue to shape the next wave of clean energy technology. As a mentor, author, and national project leader, he is building a robust academic ecosystem in Henan Province and beyond. Looking ahead, he aims to expand international collaborations, transition more research toward real-world applications, and foster interdisciplinary integration. His legacy will likely include both scientific excellence and the nurturing of future scientific leaders.

Publications Top Notes

  • Title: Defect inducing large spin orbital coupling enhances magnetic recovery dynamics in CrI3 monolayer
    Authors: Yu Zhou, Ke Zhao, Zhenfa Zheng, Huiwen Xiang, Jin Zhao,* Chengyan Liu,*
    Journal: npj Computational Materials
    Year: 2025

  • Title: Interfacial passivation of kesterite solar cells for enhanced carrier lifetime: Ab initio nonadiabatic molecular dynamics study
    Authors: Huiwen Xiang, Zhenfa Zheng, Ke Zhao, Chengyan Liu,* Jin Zhao,*
    Journal: Advanced Functional Materials
    Year: 2024

  • Title: Synergistic densification in hybrid organic-inorganic MXenes for optimized photothermal conversion
    Authors: Tong Xu, Shujuan Tan,* Shaoxiong Li, Tianyu Chen, Yue Wu, Yilin Hao, Chengyan Liu,* Guangbin Ji,*
    Journal: Advanced Functional Materials
    Year: 2024

  • Title: Defect-complex engineering to improve the optoelectronic properties of CuInS2 by phosphorus incorporation
    Authors: Huiwen Xiang, Jinping Zhang, Feifei Ren, Rui Zhu, Yu Jia, Chengyan Liu,*
    Journal: Physical Review Applied
    Year: 2023

  • Title: Analytical energy formalism and kinetic effects of grain boundaries: A case study of graphene
    Authors: Chengyan Liu, Zhiming Li, Xingao Gong,*
    Journal: Applied Physics Letters
    Year: 2024

 

Hoc Nguyen | Computational Methods | Best Researcher Award

Assoc. Prof. Dr. Hoc Nguyen | Computational Methods | Best Researcher Award

Senior Lecturer at Hanoi National University of Education | Vietnam

Nguyen Quang Hoc D, Assoc. Prof. PhD, is a distinguished academic and researcher in the field of Theoretical Physics. He currently holds the position of High-ranking Lecturer at the Department of Theoretical Physics, Faculty of Physics, at the Hanoi National University of Education, where he has contributed extensively to both teaching and research since 2009. His academic journey reflects a deep commitment to physics, spanning over decades of study and experience in solid-state physics, theoretical physics, and mechanical properties of materials.

👨‍🎓Profile

ORCID

Early Academic Pursuits 🎓

Nguyen Quang Hoc D embarked on his academic career with a solid foundation in solid-state physics, earning his Engineer degree from Hanoi University of Technology in 1982. His deep interest in theoretical physics led him to pursue advanced studies at the Hanoi National University of Education, where he completed his Master’s degree in Theoretical Physics in 1989 and later achieved his PhD in 1994, further honing his expertise in the field.

Professional Endeavors 💼

His professional career began in 1983 at the College of Teacher Training (now Haiphong University), where he served as a Lecturer and Head of the Physical Laboratory until 1994. Later, he joined the Institute of Nuclear Science and Technique, VINATOM in 1994, contributing as a Researcher. In 1997, he transitioned to the Department of Scientific Management, Faculty of Physics at Hanoi National University of Education, where he took on roles as an Expert and Principal Lecturer until he became an Associate Professor in 2009. Since 2016, he has remained in his current capacity as a High-ranking Lecturer at the university.

Contributions and Research Focus 🔬

Prof. Nguyen Quang Hoc D has focused much of his research on mechanical and thermodynamic properties of metals and interstitial alloys, particularly through the statistical moment method. His work has provided valuable insights into the transport properties of superconductors and how artificial nanostructures can influence these properties. His research has significant implications in materials science, particularly in understanding how nanostructures can improve the performance of superconductors in real-world applications.

Impact and Influence 🌍

With a career spanning more than three decades, Assoc. Prof. Nguyen Quang Hoc D has made lasting contributions to both academic research and teaching. His work on superconductors and nanostructure materials has advanced our understanding of the mechanical and thermodynamic properties of advanced materials. His findings have opened the door for further studies in nanotechnology and material science, positioning him as a leading figure in the development of advanced materials in the Vietnamese academic community.

Academic Citations 📚

Prof. Nguyen Quang Hoc D has earned recognition for his work, resulting in numerous academic citations and publications in international journals related to materials physics. His contributions to the field of theoretical physics have significantly impacted the understanding of interstitial alloys, superconductivity, and the behavior of metals under extreme conditions, making him a respected authority in his field.

Research Skills 🧠

Assoc. Prof. Nguyen Quang Hoc D possesses advanced research skills in statistical methods, materials characterization, and nanotechnology. His expertise includes the application of the statistical moment method to study the thermodynamic behavior of materials, allowing him to analyze and predict the mechanical properties of metals and alloys under various conditions. He has also worked on superconductivity, making contributions to transport properties and the influence of nanostructure pinning on type-II superconductors.

Teaching Experience 👨‍🏫

Assoc. Prof. Nguyen Quang Hoc D has a wealth of teaching experience, spanning over two decades at the Hanoi National University of Education. He has taught a range of undergraduate and graduate courses in theoretical physics and solid-state physics, providing students with foundational knowledge while also challenging them with cutting-edge concepts in the field. His role as a mentor and principal lecturer has helped shape the next generation of physicists and scientists in Vietnam.

Awards and Honors 🏅

Throughout his career, Assoc. Prof. Nguyen Quang Hoc D has been the recipient of various awards and honors in recognition of his contributions to the field of physics. His dedication to both research and teaching has earned him respect within the academic community, and he continues to inspire those around him with his innovative research and commitment to excellence.

Legacy and Future Contributions 🌱

As Assoc. Prof. Nguyen Quang Hoc D continues his work at Hanoi National University of Education, his legacy remains rooted in his innovative research, teaching dedication, and academic leadership. Moving forward, he is expected to continue influencing the field of material science, particularly in the realms of superconductivity and nanotechnology. His future contributions will undoubtedly lead to advancements in the understanding of metals, alloys, and superconductive materials, strengthening the scientific community in Vietnam and beyond.

Publications Top Notes

On the Melting of Crystal Under Compression: SMM Fundamental Theory and its Application to Laser Materials Processing

  • Authors: Nguyen Quang Hoc, Le Hong Viet
    Journal: Transactions of the Indian Institute of Metals
    Year: 2025

Theoretical predictions of thermodynamic properties, elastic deformation, HCP-FCC structural phase transition and melting of iron at high temperatures up to 18000 K and high pressures up to 4000 GPa

  • Authors: Nguyen Quang Hoc, Nguyen Duc Trung, Hua Xuan Dat, Le Thu Lam
    Journal: Physics Letters A
    Year: 2025

Correction: Thermodynamic properties of perovskite MgSiO3 with cubic structure under extreme conditions

  • Authors: Quang Hoc Nguyen, Nhi Quynh Ngo, Thi Mai Dao, Cong Vien Tran, Thi Thu Tra Lai, Thi Van Anh Le, Thi Thuy An Nguyen
    Journal: The European Physical Journal B
    Year: 2024

Thermodynamic properties of perovskite MgSiO3 with cubic structure under extreme conditions

  • Authors: Hoc Quang Nguyen, Nhi Quynh Ngo, Mai Thi Dao, Vien Cong Tran, Tra Thi Thu Lai, Anh Thi Van Le, An Thi Thuy Nguyen
    Journal: The European Physical Journal B
    Year: 2024

Study on Remelting of Crystal Under Extreme Conditions

  • Authors: Hoc Quang Nguyen, Huyen Thanh Thi Tran, Nhi Quynh Ngo, Mai Thi Dao, Phong Khac Nguyen
    Journal: Transactions of the Indian Institute of Metals
    Year: 2024