Jie Tian | Experimental methods | Best Researcher Award

Prof. Jie Tian | Experimental methods | Best Researcher Award

Dr. Jie Tian is a distinguished Professor at the Institute of Acoustics, Chinese Academy of Science, Beijing, China. He holds a Ph.D. in Automatic Control from Beijing Institute of Technology (2002) and a Bachelor’s degree in Automatic Control from Northwestern Polytechnic University (1995). His primary research focus lies in the fields of underwater information and signal processing and classification & image processing.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Dr. Tian’s academic journey began at Northwestern Polytechnic University, where he earned his Bachelor’s degree in Automatic Control in 1995. Building on this foundation, he pursued his Ph.D. at Beijing Institute of Technology, specializing in Automatic Control. His studies laid the groundwork for his deep engagement with signal processing and image processing algorithms, disciplines that continue to define his career today.

💼 Professional Endeavors

Dr. Tian’s professional career spans over two decades, marked by significant contributions to both academia and research. He is currently a Professor at the Institute of Acoustics, Chinese Academy of Science, where he has worked since 2002. His career trajectory includes a Postdoctoral fellowship and Associate Professorship at the same institution, where he developed theoretical algorithms for image processing and worked extensively on information processing systems. His transition from postdoc to professor reflects his growing influence in his field, particularly in the domain of underwater acoustic communication networks and image classification.

🔬 Contributions and Research Focus

Dr. Tian’s research contributions are far-reaching and impactful. His expertise includes underwater information processing, with a particular focus on underwater object classification, and sonar image processing. Notable areas of his work include:

  • Cross-layer routing protocols for underwater acoustic communication networks.
  • Deformable residual networks and transfer learning for underwater object classification in SAS images.
  • Deep neural networks for classification in high-resolution sonar images.

His focus on advanced algorithms such as deep neural networks and SVM-based techniques has helped push forward the frontiers of image classification and signal processing in challenging underwater environments.

🧑‍🏫 Teaching Experience

Dr. Tian is not only a researcher but also a dedicated educator. As a Professor, he has mentored countless students and guided the next generation of researchers in the Institute of Acoustics. His expertise in image processing and signal processing provides students with valuable insights into cutting-edge technologies, preparing them for careers in academic research and industry applications.

🔮 Legacy and Future Contributions

Dr. Tian’s work has already left a lasting impact on underwater imaging and signal processing. Looking ahead, his future contributions are likely to expand into AI-driven underwater communication systems and real-time processing algorithms, further advancing the practical applications of his research. His continued focus on image processing algorithms and deep learning will undoubtedly lead to more innovative breakthroughs that enhance the capabilities of underwater technologies, benefiting both scientific exploration and practical communication systems.

Publications Top Notes

  • Cross-Layer Routing Protocol Based on Channel Quality for Underwater Acoustic Communication Networks
    Authors: He, J., Tian, J., Pu, Z., Wang, W., Huang, H.
    Journal: Applied Sciences (Switzerland)
    Year: 2024
  • Underwater Object Classification in SAS Images Based on a Deformable Residual Network and Transfer Learning
    Authors: Gong, W., Tian, J., Liu, J., Li, B.
    Journal: Applied Sciences (Switzerland)
    Year: 2023
  • Underwater Object Classification Method Based on Depthwise Separable Convolution Feature Fusion in Sonar Images
    Authors: Gong, W., Tian, J., Liu, J.
    Journal: Applied Sciences (Switzerland)
    Year: 2022
  • Underwater objects classification method in high-resolution sonar images using deep neural network
    Authors: Zhu, K., Tian, J., Huang, H.
    Journal: Shengxue Xuebao/Acta Acustica
    Year: 2019
  • Small Underwater Objects Classification in Multi-View Sonar Images Using the Deep Neural Network
    Authors: Zhu, K., Tian, J., Huang, H.
    Journal: Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument
    Year: 2020

 

 

Celal Kursun | Experimental methods | Best Researcher Award

Assoc Prof Dr. Celal Kursun | Experimental methods | Best Researcher Award

Head of Materials Science and Engineering at Kahramanmaras Sutcu Imam University, Turkey

Dr. Celal Kurşun is an Associate Professor at Kahramanmaraş Sütçü İmam University, specializing in Materials Science and Engineering. He completed his postdoctoral research at the University of Wisconsin-Madison and has a strong background in the synthesis and characterization of advanced materials, including magnesium-based alloys and metallic glasses. Dr. Kurşun has held various academic positions, including Assistant Professor and Research Specialist, and has supervised numerous graduate theses.

🎓Profile

Early Academic Pursuits 📚

Dr. Celal Kurşun’s academic journey is a testament to his dedication to materials science and engineering, with a particular focus on advanced alloys, structural properties, and energy applications. His academic path began with a Bachelor’s degree in 2009, followed by a Master’s degree in 2012, where he investigated the structural and thermal properties of copper-based alloys. These early pursuits laid the foundation for his more extensive doctoral research, where he completed not one but two PhD theses. The first, completed in 2015, focused on the structural, thermal, and mechanical properties of Cu-based nanocrystalline alloys, while the second (2018) shifted focus to magnesium-based amorphous and nanocrystalline alloys, particularly their mechanical and hydrogen storage capacities. This early academic pursuit of diverse materials’ properties set the stage for his later contributions to high-impact research areas such as energy storage, radiation shielding, and alloy design.

Professional Endeavors & Postdoctoral Research 🔬

Dr. Kurşun’s professional career is distinguished by both teaching and high-level research. After earning his PhD, he undertook a postdoctoral position at the prestigious University of Wisconsin-Madison (2018-2020) within the Materials Science and Engineering Department. Here, his research concentrated on the design, synthesis, and characterization of advanced magnesium-based bulk metallic glass alloys for hydrogen storage and energy applications. This period not only sharpened his research skills but also allowed him to engage in cutting-edge projects with significant implications for sustainable energy technologies. His postdoctoral work solidified his reputation as a leading figure in the study of energy-efficient materials.

Contributions and Research Focus ⚙️

Dr. Kurşun’s research focuses on advanced materials, particularly nanostructured and metallic glass alloys. His work addresses critical challenges in energy storage, with a focus on hydrogen storage in magnesium-based alloys, which holds promise for clean energy applications. Additionally, his research on radiation shielding materials, such as boron-doped titanium alloys and Al-Gd2O3 composites, contributes to industries requiring advanced protective materials against neutron and gamma radiation, such as nuclear energy and space exploration.

Impact and Influence 🌍

Dr. Kurşun’s research has not only advanced academic knowledge but has also had significant real-world applications. His groundbreaking work on magnesium-based alloys for hydrogen storage and his innovative approaches to improving radiation shielding materials have placed him at the forefront of energy and environmental research. Furthermore, his academic leadership has had a broad impact through the mentorship of numerous graduate students, many of whom have gone on to pursue successful careers in materials science and engineering. His recognition within international scientific organizations such as the American Physical Society and The Minerals, Metals & Materials Society underscores his influence on the global materials science community.

Academic Citations 📑

Dr. Kurşun’s work has been consistently recognized and cited in leading international journals, including Journal of Materials Science: Materials in Electronics, Ceramics International, and HELIYON. His research on the structural and mechanical properties of alloys, radiation shielding, and catalytic processes is frequently cited by researchers working in similar domains, contributing to the development of novel materials and technologies. His citation record reflects the impact his work has had on advancing knowledge and innovation in materials science, energy storage, and environmental sustainability.

Technical Skills 🛠️

Dr. Kurşun possesses an extensive skill set, combining advanced experimental techniques with theoretical modeling. His technical expertise includes the design, synthesis, and characterization of amorphous and nanocrystalline alloys, as well as mechanical testing, neutron and gamma radiation shielding, and the study of thermal properties of materials. His familiarity with techniques such as arc melting, mechanical alloying, and the use of various characterization tools (e.g., X-ray diffraction, scanning electron microscopy) allows him to address complex challenges in materials science.

Teaching Experience 🍎

Throughout his career, Dr. Kurşun has demonstrated a strong commitment to teaching and mentoring students. As an Associate Professor, he has designed and taught various courses in materials science, solid-state physics, and engineering, preparing the next generation of scientists and engineers. His approach to teaching emphasizes not only the theoretical foundations of materials science but also practical, hands-on experiences that prepare students for real-world challenges. In addition to his classroom duties, Dr. Kurşun has supervised a number of graduate and undergraduate theses, helping students pursue their research interests and develop critical thinking and analytical skills.

Legacy and Future Contributions 🔮

Dr. Kurşun’s legacy is already being shaped by his continued research and mentorship, with his influence extending to both the scientific community and the educational sector. Looking ahead, Dr. Kurşun aims to deepen his work on sustainable materials for energy applications, particularly in developing alloys that can address the global demand for clean energy solutions. His research trajectory also hints at greater interdisciplinary work, exploring areas where materials science meets environmental sustainability, energy storage, and the circular economy.

Publication Top Notes📖

Structure, mechanical, and neutron radiation shielding characteristics of mechanically milled nanostructured (100-x)Al-xGd2O3 metal composites
  • Authors: Celal Kursun, Meng Gao, Ali Orkun Yalcin, Khursheed A. Parrey, Yasin Gaylan
    Journal: Ceramics International
    Year: 2024
Unraveling structural relaxation induced ductile-to-brittle transition from perspective of shear band nucleation kinetics in metallic glass
  • Authors: Meng Gao, Celal Kursun, John H. Perepezko
    Journal: Journal of Alloys and Compounds
    Year: 2023
Synthesis and mechanical properties of (Ni70Si30)100−x Fe x (x = 0, 5, 10) alloys
  • Authors: Celal Kursun, Ahmet Muslim Aksoy
    Journal: Emerging Materials Research
    Year: 2019
Mechanical properties, microstructural and thermal evolution of Mg65Ni20Y15−xSix (X = 1, 2, 3) alloys by mechanical alloying
  • Authors: Celal Kursun, Musa Gogebakan, Hasan Eskalen
    Journal: Materials Research Express
    Year: 2018
The Effect of Milling Time on the Synthesis of Cu54Mg22Ti18Ni6 Alloy
  • Authors: Celal Kursun, Musa Gogebakan
    Journal: 9th International Physics Conference of the Balkan Physical Union (Bpu-9)
    Year: 2016

 

 

Ziyao Jie | Experimental methods | Best Researcher Award

Dr. Ziyao Jie | Experimental methods | Best Researcher Award

Postdoc at State Grid Jibei Electric Power Co., Ltd. Research Institute in China

Ziyao Jie is a postdoctoral researcher at the State Grid Jibei Electric Power Research Institute. He holds a Ph.D. in Electrical Engineering from Tsinghua University, where his research centered on the microwave plasma-based synthesis of nanomaterials for lithium-ion battery applications. Throughout his academic career, Ziyao has made notable contributions to sustainable energy and plasma science, with a focus on improving energy storage technologies. His work on graphene-coated silicon nanomaterials addresses critical issues in battery performance, such as energy capacity and cycling stability. Ziyao’s research has been widely recognized, with multiple patents and publications in high-impact journals.

Profile:

Education:

Ziyao Jie earned his Ph.D. in Electrical Engineering from Tsinghua University, where he specialized in plasma science and nanomaterials synthesis under the guidance of Professor Guixin Zhang. His doctoral thesis focused on the development of microwave plasma methods for producing graphene-coated silicon nanoparticles, designed to enhance lithium-ion battery performance. During his studies, Ziyao gained a comprehensive understanding of high-voltage technologies, nanomaterial properties, and energy storage solutions, which equipped him to tackle real-world challenges in sustainable energy. His academic excellence is reflected in his deep knowledge of plasma diagnostics and high-temperature material synthesis.

Professional Experience:

Ziyao Jie has amassed significant experience in plasma science and energy storage. Following his doctoral research at Tsinghua University, where he developed innovative methods for synthesizing advanced materials for batteries, he continued as a postdoctoral researcher at the State Grid Jibei Electric Power Research Institute. His current work focuses on high-voltage and energy storage systems, contributing to the development of large-scale, sustainable energy solutions. Ziyao has collaborated on key projects such as the Beijing Science and Technology Planning Project, and his expertise spans the areas of nanomaterial synthesis, waste treatment with plasma, and renewable energy applications.

Research focus:

Ziyao Jie’s research focuses on the intersection of plasma science, nanomaterials, and sustainable energy. His primary area of interest is the synthesis of nanomaterials using microwave plasma technologies, with a particular focus on developing advanced materials for energy storage, such as graphene-coated silicon nanoparticles for lithium-ion batteries. His work aims to address key challenges in energy density, stability, and scalability for future battery technologies. Ziyao is also involved in developing plasma-based waste treatment systems, including medical waste management, using high-temperature plasma torches. His research is distinguished by its potential to revolutionize both energy storage and environmental sustainability.

Awards and Honors:

Ziyao Jie has received numerous accolades for his groundbreaking work in plasma science and nanomaterials. His research on microwave plasma-based synthesis earned him recognition in energy storage circles, particularly for his contributions to improving lithium-ion battery technology. Ziyao was a participant in the Beijing Science and Technology Planning Project, which recognized his innovative work on high-energy and high-voltage technologies. Additionally, his patented inventions, which include advanced methods for medical waste treatment and nanomaterial applications, have further established his reputation as a leading researcher. Ziyao’s contributions have also led to high citation indices, highlighting his influence in the academic community.

Publication Top Notes:

  • Mechanisms of Gas Temperature Variation of the Atmospheric Microwave Plasma Torch
    Z. Jie, C. Liu, S. Huang, G. Zhang
    Journal of Applied Physics, 129 (23), 2021
    Citations: 12
  • Microwave Plasma Torches for Solid Waste Treatment and Vitrification
    Z. Jie, C. Liu, D. Xia, G. Zhang
    Environmental Science and Pollution Research, 30 (12), 32827-32838, 2023
    Citations: 10
  • Imaging Diagnostics and Gas Temperature Measurements of Atmospheric-Microwave-Induced Air Plasma Torch
    S. Huang, C. Liu, Z. Jie, G. Zhang
    IEEE Transactions on Plasma Science, 48 (6), 2153-2162, 2020
    Citations: 10
  • Polymer Dielectrics with Outstanding Dielectric Characteristics via Passivation with Oxygen Atoms through C–F Vacancy Carbonylation
    T.Y. Wang, X.F. Li, Z. Jie, B.X. Liu, G. Zhang, J.B. Liu, Z.M. Dang, Z.L. Wang
    Nano Letters, 23 (18), 8808-8815, 2023
    Citations: 8
  • An Atmospheric Microwave Plasma-Based Distributed System for Medical Waste Treatment
    Z. Jie, C. Liu, D. Xia, G. Zhang
    Environmental Science and Pollution Research, 30 (17), 51314-51326, 2023
    Citations: 6
  • Surface-Wave-Sustained Plasma Synthesis of Graphene@Fe–Si Nanoparticles for Lithium-Ion Battery Anodes
    Z. Jie, Z. Zhang, X. Bai, W. Ma, X. Zhao, Q. Chen, G. Zhang
    Applied Physics Letters, 123 (11), 2023
    Citations: 3
  • Determination of 915-MHz Atmospheric Pressure Air Microwave Plasma Torch (MPT) Parameters
    Z. Jie, C. Liu, D. Xia, Z. Zhang, X. Zhao, G. Zhang
    IEEE Transactions on Plasma Science, 51 (2), 456-465, 2023
    Citations: 2
  • The Treatment of Medical Waste by Atmospheric Microwave Plasma
    D. Xia, C. Liu, Z. Jie, G. Zhang
    2021 IEEE International Conference on Plasma Science (ICOPS), 2021
    Citations: 2
  • Microwave Plasma Torch for Solid Waste Treatment
    Z. Jie, C. Liu, D. Xia, G. Zhang
    IET Digital Library, 2021
    Citations: 2
  • Continuous Batch Synthesis with Atmospheric-Pressure Microwave Plasmas
    Z. Jie, T.Y. Wang, S. Huang, X. Bai, W. Ma, G. Zhang, N. Luo
    iScience, 27 (8), 2024
    Citations: N/A

Conclusion:

Ziyao Jie is a strong candidate for the Best Researcher Award, with his groundbreaking contributions in plasma science and energy storage technologies. His research has direct implications for sustainable energy solutions, positioning him at the forefront of innovations in high-energy physics and computational science. His achievements, particularly his patents and numerous high-impact publications, showcase his potential to make lasting contributions to academia and industry, making him highly suitable for this prestigious award.

 

Priyanka Sahu | Experimental methods | Young Scientist Award

Dr. Priyanka Sahu | Experimental methods | Young Scientist Award

Assistant Professor at Rajiv Gandhi University of Knowledge of Technologies-RK Valley (AP-IIIT RK Valley), India

Dr. Priyanka Sahu is an accomplished academic and researcher, currently serving as an Assistant Professor in the Department of Electronics and Communication Engineering at Rajiv Gandhi University of Knowledge Technologies (AP-IIIT), Idupulapaya, Andhra Pradesh. With a solid foundation in Physics and Astronomy (Materials Science), she holds an M.Tech degree from NIT Rourkela and a Ph.D. from IIT Indore. Her research focuses on the development of high entropy alloys and soft magnetic materials, with expertise in experimental methodologies such as sol-gel auto-combustion and mechanical alloying. Dr. Sahu has published numerous high-impact papers, presented at international conferences, and received prestigious accolades like the Best Researcher Award and Best Oral Presentation. She is a passionate educator and an innovative thinker, contributing significantly to both research and academia.

Profile:

Education

Dr. Priyanka Sahu has pursued an impressive academic journey, earning her Ph.D. in Materials Science from the Indian Institute of Technology Indore (IITI) in 2023, where her dissertation focused on developing and characterizing high-entropy soft magnetic alloys. She holds an M.Tech (Research) degree in Physics and Astronomy with a specialization in Materials Science from the National Institute of Technology Rourkela (NITR) in 2017, during which she studied the electrical and magnetic properties of modified strontium hexaferrite. Prior to this, she completed her Bachelor of Engineering in Electronics and Telecommunication at the Government Engineering College Bilaspur in 2014, following a diploma in the same discipline from the Government Polytechnic College Ambikapur in 2011. Throughout her academic journey, Dr. Sahu has consistently maintained high honors and distinctions, showcasing her dedication to research and learning.

 

Professional experience

Dr. Priyanka Sahu has accumulated diverse teaching and research experience. She is currently serving as an Assistant Professor in the Department of Electronics and Communication Engineering at Rajiv Gandhi University of Knowledge Technologies (AP-IIIT), Idupulapaya, Andhra Pradesh, since March 2024. Prior to this, Dr. Sahu worked as a Teaching Assistant and researcher at IIT Indore from 2017 to 2023, during which she handled multiple labs and courses related to physical metallurgy and material science. Her research experience also includes working at NIT Rourkela in a Physics Laboratory. Dr. Sahu has expertise in handling various high-end instruments such as X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Differential Scanning Calorimetry (DSC), which are crucial in material characterization. She has also participated in numerous national and international conferences as a presenter and invited speaker, furthering her knowledge and sharing insights into her specialized research areas.

Research focus

Dr. Priyanka Sahu’s research is centered around the development of advanced materials, particularly high-entropy alloys (HEAs), soft magnetic materials, and magnetocaloric materials. Her work explores novel synthesis methods, including mechanical alloying and sol-gel auto-combustion, to develop new materials with superior thermal, magnetic, and electrical properties. Dr. Sahu has extensively studied the microstructural and magnetic behaviors of multi-component alloys, investigating the influence of elements like Si and Mn on phase evolution and magnetic properties. She also focuses on thermodynamic modeling using Redlich-Kister formalism and Miedema’s semi-empirical models for predicting phase formations in these alloys. Her research aims to apply theoretical models to experimental data for better material characterization, especially in high-entropy amorphous alloys. Dr. Sahu’s work is highly interdisciplinary, impacting fields like nanotechnology, metallurgy, and condensed matter physics.

Award and Recognition

Dr. Priyanka Sahu has received numerous accolades throughout her academic and professional career. She was awarded the prestigious “Best Researcher Award” at the 16th edition of International Research Awards in Atomic, Molecular, and Optical Physics in 2024. Her outstanding oral presentation in the “Progress in Metallurgy & Materials (ISPMM-2023)” at IIT Indore earned her a Best Oral Presentation award. Additionally, she secured the 1st runner-up spot in poster presentation during the Research and Industrial Conclave (RIC-2023) at IIT Indore. Dr. Sahu has also received multiple honorariums for her contributions to various programs such as the QIP program at IIT Indore and TEQIP-III in 2018. She was recognized for her early academic excellence with a merit scholarship at Government Polytechnic College Ambikapur, and she ranked 1st in class during her diploma years. These honors reflect her commitment to research and academia.

Publication Top Notes:

  • Synthesis and characterization of hydrogenated novel AlCrFeMnNiW high entropy alloy
    ✍️ SK Dewangan, VK Sharma, P Sahu, V Kumar
    📘 International Journal of Hydrogen Energy, 45(34), 16984-16991, 2020, cited 62 times
  • Investigating the effect of multiple grain–grain interfaces on electric and magnetic properties of [50 wt% BaFe12O19–50 wt% Na0.5Bi0.5TiO3] composite system
    ✍️ R Pattanayak, R Muduli, RK Panda, T Dash, P Sahu, S Raut, S Panigrahi
    📘 Physica B: Condensed Matter, 485, 67-77, 2016, cited 42 times
  • Microstructure and magnetic behavior of FeCoNi (Mn–Si) x (x= 0.5, 0.75, 1.0) high-entropy alloys
    ✍️ P Sahu, S Solanki, S Dewangan, V Kumar
    📘 Journal of Materials Research, 34(5), 829-840, 2019, cited 30 times
  • Dielectric, ferroelectric and impedance spectroscopic studies in TiO2-doped AgNbO3 ceramic
    ✍️ R Muduli, R Pattanayak, S Raut, P Sahu, V Senthil, S Rath, P Kumar, …
    📘 Journal of Alloys and Compounds, 664, 715-725, 2016, cited 21 times
  • Effect of grain size on electric transport and magnetic behavior of strontium hexaferrite (SrFe12O19)
    ✍️ P Sahu, SN Tripathy, R Pattanayak, R Muduli, N Mohapatra, S Panigrahi
    📘 Applied Physics A, 123, 1-10, 2017, cited 15 times
  • Microstructural, magnetic, and geometrical thermodynamic investigation of FeCoNi (MnSi) x (0.0, 0.1, 0.25, 0.5, 0.75, 1.0) high entropy alloys
    ✍️ P Sahu, S Samal, V Kumar
    📘 Materialia, 18, 101133, 2021, cited 7 times
  • Impact of Si and Mg on Microstructural and Magnetic Behavior of Fe-Co-Ni (Mg-Si)x (x = 0.00,0.1,0.2) Multicomponent Alloys
    ✍️ P Sahu, AS Bagri, MD Anoop, M Kumar, V Kumar
    📘 Silicon, 12, 893-902, 2020, cited 7 times
  • Microstructural, magnetic, and geometrical thermodynamic investigation of FeCoNi (MnSi) x (0.0, 0.1, 0.25, 0.5, 0.75, 1.0) high entropy alloys
    ✍️ P Sahu, S Samal, V Kumar
    📘 Materialia, 18, 101133, Patent NO
  • Microstructure, Non-isothermal Crystallization Kinetics and Magnetic Behaviour Study of [FeCoNi100-x(SiMn)x] High Entropy Amorphous Alloys Synthesized by …
    ✍️ P Sahu, S Samal, V Kumar
    📘 Metals and Materials International, 29(9), 2684-2709, 2023, cited 3 times
  • Phase Evolution and Soft Magnetic Behavior of Mechanically Alloyed Fe–Co–Ni Medium Entropy Alloy at Different Disk Angular Velocity
    ✍️ P Sahu, S Samal, V Kumar
    📘 Transactions of the Indian Institute of Metals, 76(11), 3065-3078, 2023, cited 2 times
  • Investigation of the structural, electrical, and magnetic behavior of Co3+-Ti4+ doped strontium hexaferrite: validation of measured and theoretical models
    ✍️ P Sahu, PK Sahu, S Panigrahi
    📘 Journal of Materials Science: Materials in Electronics, 35(10), 709, 2024, cited 1 time
  • Influence of Si and Mn on the Phase Formation, Crystallization Kinetics, and Enhanced Magnetic Properties of Mechanically Alloyed NiCoFe(SiMn)x High Entropy …
    ✍️ P Sahu, S Samal, V Kumar
    📘 Silicon, 15(12), 5367-5392, 2023, cited 1 time
  • An assessment of the mechanically alloyed equiatomic FeCoNiMnSi high entropy amorphous alloy for non-isothermal crystallization kinetics and magnetocaloric refrigeration …
    ✍️ P Sahu, S Samal, V Kumar
    📘 Materials Characterization, 216, 114269, 2024

Conclusion

Overall, Dr. Priyanka Sahu is a well-rounded researcher with a solid background in materials science, excellent technical skills, a significant publication record, and previous awards. Her contributions to the field of high entropy alloys and magnetocaloric materials are impressive and impactful. While focusing on securing research funding and pursuing interdisciplinary research could enhance her profile further, she is undoubtedly a deserving candidate for the “Best Researcher Award.”